Suppr超能文献

基于 HfAlOx 的铁电忆阻器实现伤害感受器和突触功能。

HfAlOx-based ferroelectric memristor for nociceptor and synapse functions.

机构信息

Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, Republic of Korea.

Department of Computer Science and Engineering, Incheon National University, Incheon 22012, South Korea.

出版信息

J Chem Phys. 2024 Aug 28;161(8). doi: 10.1063/5.0224896.

Abstract

Efficient data processing is heavily reliant on prioritizing specific stimuli and categorizing incoming information. Within human biological systems, dorsal root ganglions (particularly nociceptors situated in the skin) perform a pivotal role in detecting external stimuli. These neurons send warnings to our brain, priming it to anticipate potential harm and prevent injury. In this study, we explore the potential of using a ferroelectric memristor device structured as a metal-ferroelectric-insulator-semiconductor as an artificial nociceptor. The aim of this device is to electrically receive external damage and interpret signals of danger. The TiN/HfAlOx (HAO)/HfSiOx (HSO)/n+ Si configuration of this device replicates the key functions of a biological nociceptor. The emulation includes crucial aspects, such as threshold reactivity, relaxation, no adaptation, and sensitization phenomena known as "allodynia" and "hyperalgesia." Moreover, we propose establishing a connection between nociceptors and synapses by training the Hebbian learning rule. This involves exposing the device to injurious stimuli and using this experience to enhance its responsiveness, replicating synaptic plasticity.

摘要

高效的数据处理在很大程度上依赖于对特定刺激进行优先级排序和对输入信息进行分类。在人类生物系统中,背根神经节(特别是位于皮肤中的伤害感受器)在检测外部刺激方面起着关键作用。这些神经元向我们的大脑发出警告,使其预先感知潜在的伤害并防止受伤。在这项研究中,我们探索了使用铁电忆阻器器件作为人工伤害感受器的可能性,该器件结构为金属-铁电-绝缘体-半导体。该器件的目的是通过电接收外部损伤并解释危险信号。该器件的 TiN/HfAlOx (HAO)/HfSiOx (HSO)/n+ Si 结构复制了生物伤害感受器的关键功能。这种模拟包括关键方面,如阈值反应性、弛豫、无适应和敏感化现象,称为“痛觉过敏”和“痛觉过敏”。此外,我们通过训练赫布学习规则来提出将伤害感受器与突触联系起来的方法。这涉及到使设备暴露于伤害性刺激下,并利用这种经验来增强其反应性,从而复制突触可塑性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验