Suppr超能文献

通过铁电调制实现二维层状BiOSe双功能微反应器的极化可切换电化学

Polarization-Switchable Electrochemistry of 2D Layered BiOSe Bifunctional Microreactors by Ferroelectric Modulation.

作者信息

Chiang Chun-Hao, Yu Chun-Hung, Lu Yang-Sheng, Yang Yueh-Chiang, Lin Yin-Cheng, Chen Hsin-An, Ho Sheng-Zhu, Chen Yi-Chun, Kumatani Akichika, Chang Chen, Kuo Pai-Chia, Shiue Jessie, Li Shao-Sian, Chiu Po-Wen, Chen Chun-Wei

机构信息

Department of Materials Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan.

Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei, 10608 Taiwan.

出版信息

Nano Lett. 2024 Sep 4;24(35):11012-11019. doi: 10.1021/acs.nanolett.4c03128. Epub 2024 Aug 26.

Abstract

Ferroelectric catalysts are known for altering surface catalytic activities by changing the direction of their electric polarizations. This study demonstrates polarization-switchable electrochemistry using layered bismuth oxyselenide (L-BiOSe) bifunctional microreactors through ferroelectric modulation. A selective-area ionic liquid gating is developed with precise control over the spatial distribution of the dipole orientation of L-BiOSe. On-chip microreactors with upward polarization favor the oxygen evolution reaction, whereas those with downward polarization prefer the hydrogen evolution reaction. The microscopic origin behind polarization-switchable electrochemistry primarily stems from enhanced surface adsorption and reduced energy barriers for reactions, as examined by nanoscale scanning electrochemical cell microscopy. Integrating a pair of L-BiOSe microreactors consisting of upward or downward polarizations demonstrates overall water splitting in a full-cell configuration based on a bifunctional catalyst. The ability to modulate surface polarizations on a single catalyst via ferroelectric polarization switching offers a pathway for designing catalysts for water splitting.

摘要

铁电催化剂以通过改变其电极化方向来改变表面催化活性而闻名。本研究通过铁电调制,利用层状氧硒化铋(L-BiOSe)双功能微反应器展示了极化可切换电化学。开发了一种选择性区域离子液体门控技术,可精确控制L-BiOSe偶极取向的空间分布。向上极化的片上微反应器有利于析氧反应,而向下极化的微反应器则更倾向于析氢反应。通过纳米级扫描电化学池显微镜检查发现,极化可切换电化学背后的微观起源主要源于增强的表面吸附和降低的反应能垒。将一对由向上或向下极化组成的L-BiOSe微反应器集成在一起,展示了基于双功能催化剂的全电池配置中的整体水分解。通过铁电极化切换在单一催化剂上调节表面极化的能力为设计用于水分解的催化剂提供了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06da/11378338/2f3abf185462/nl4c03128_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验