Cai Miao, He Xiao, Zhou Donghua
IEEE Trans Cybern. 2024 Sep;54(9):5506-5517. doi: 10.1109/TCYB.2024.3378208.
In this article, a finite-time fault-tolerant controller based on the fully actuated system (FAS) theory is presented to realize system stabilization and trajectory tracking. Paralleling to first-order nonlinear state space theory, the high-order FAS (HOFAS) theory contains rich controller design approaches. The existing FAS approaches can only give general global asymptotic stability results. In order to enhance the applicability of FAS approaches in fast control systems, a parameterized FAS stabilization controller based on the homogeneity principle is established for global finite-time stability. Moreover, a finite-time FAS tracking controller based on a finite-time observer is proposed for a HOFAS model with process faults. The proposed observer can yield zero-value convergence of state estimation error and fault estimation error in a finite time, and the proposed fault-tolerant controller can yield zero-value convergence of tracking error in a finite time. The main results are proved theoretically and illustrated experimentally.
本文提出了一种基于全驱动系统(FAS)理论的有限时间容错控制器,以实现系统稳定和轨迹跟踪。与一阶非线性状态空间理论并行,高阶全驱动系统(HOFAS)理论包含丰富的控制器设计方法。现有的全驱动系统方法只能给出一般的全局渐近稳定性结果。为了提高全驱动系统方法在快速控制系统中的适用性,基于齐次性原理建立了一种参数化全驱动系统稳定控制器,以实现全局有限时间稳定。此外,针对具有过程故障的高阶全驱动系统模型,提出了一种基于有限时间观测器的有限时间全驱动系统跟踪控制器。所提出的观测器能够在有限时间内实现状态估计误差和故障估计误差的零值收敛,所提出的容错控制器能够在有限时间内实现跟踪误差的零值收敛。理论上证明了主要结果,并通过实验进行了说明。