Harper Dustin T, Hönisch Bärbel, Bowen Gabriel J, Zeebe Richard E, Haynes Laura L, Penman Donald E, Zachos James C
Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112.
Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964.
Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2318779121. doi: 10.1073/pnas.2318779121. Epub 2024 Aug 26.
The late Paleocene and early Eocene (LPEE) are characterized by long-term (million years, Myr) global warming and by transient, abrupt (kiloyears, kyr) warming events, termed hyperthermals. Although both have been attributed to greenhouse (CO) forcing, the longer-term trend in climate was likely influenced by additional forcing factors (i.e., tectonics) and the extent to which warming was driven by atmospheric CO remains unclear. Here, we use a suite of new and existing observations from planktic foraminifera collected at Pacific Ocean Drilling Program Sites 1209 and 1210 and inversion of a multiproxy Bayesian hierarchical model to quantify sea surface temperature (SST) and atmospheric CO over a 6-Myr interval. Our reconstructions span the initiation of long-term LPEE warming (~58 Ma), and the two largest Paleogene hyperthermals, the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma) and Eocene Thermal Maximum 2 (ETM-2, ~54 Ma). Our results show strong coupling between CO and temperature over the long- (LPEE) and short-term (PETM and ETM-2) but differing Pacific climate sensitivities over the two timescales. Combined CO and carbon isotope trends imply the carbon source driving CO increase was likely methanogenic, organic, or mixed for the PETM and organic for ETM-2, whereas a source with higher δC values (e.g., volcanic degassing) is associated with the long-term LPEE. Reconstructed emissions for the PETM (5,800 Gt C) and ETM-2 (3,800 Gt C) are comparable in mass to future emission scenarios, reinforcing the value of these events as analogs of anthropogenic change.
晚古新世和早始新世(LPEE)的特征是长期(数百万年,Myr)的全球变暖以及短暂、突然(数千年,kyr)的变暖事件,即高温事件。尽管两者都归因于温室气体(CO)强迫,但气候的长期趋势可能受到其他强迫因素(即构造运动)的影响,而大气CO驱动变暖的程度仍不清楚。在这里,我们使用了从太平洋钻探计划站点1209和1210收集的一组新的和现有的浮游有孔虫观测数据,并对一个多代理贝叶斯层次模型进行反演,以量化600万年时间间隔内的海面温度(SST)和大气CO。我们的重建跨越了长期LPEE变暖的开始(约5800万年前),以及古近纪两个最大的高温事件,即古新世-始新世极热事件(PETM,约5600万年前)和始新世极热事件2(ETM-2,约5400万年前)。我们的结果表明,在长期(LPEE)和短期(PETM和ETM-2)内,CO和温度之间存在强耦合,但在两个时间尺度上太平洋气候敏感性不同。CO和碳同位素趋势综合表明,驱动CO增加的碳源在PETM时可能是产甲烷的、有机的或混合的,而ETM-2时是有机的,而具有较高δC值的源(如火山排气)与长期LPEE有关。PETM(5800 Gt C)和ETM-2(3800 Gt C)的重建排放量在质量上与未来排放情景相当,这强化了这些事件作为人为变化类似物的价值。