Suppr超能文献

机器学习增强型 EMS 诱变概率图谱,可高效鉴定秀丽隐杆线虫中的因果突变。

A machine learning enhanced EMS mutagenesis probability map for efficient identification of causal mutations in Caenorhabditis elegans.

机构信息

Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, State Key Laboratory of Membrane Biology, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China.

出版信息

PLoS Genet. 2024 Aug 26;20(8):e1011377. doi: 10.1371/journal.pgen.1011377. eCollection 2024 Aug.

Abstract

Chemical mutagenesis-driven forward genetic screens are pivotal in unveiling gene functions, yet identifying causal mutations behind phenotypes remains laborious, hindering their high-throughput application. Here, we reveal a non-uniform mutation rate caused by Ethyl Methane Sulfonate (EMS) mutagenesis in the C. elegans genome, indicating that mutation frequency is influenced by proximate sequence context and chromatin status. Leveraging these factors, we developed a machine learning enhanced pipeline to create a comprehensive EMS mutagenesis probability map for the C. elegans genome. This map operates on the principle that causative mutations are enriched in genetic screens targeting specific phenotypes among random mutations. Applying this map to Whole Genome Sequencing (WGS) data of genetic suppressors that rescue a C. elegans ciliary kinesin mutant, we successfully pinpointed causal mutations without generating recombinant inbred lines. This method can be adapted in other species, offering a scalable approach for identifying causal genes and revitalizing the effectiveness of forward genetic screens.

摘要

化学诱变驱动的正向遗传学筛选在揭示基因功能方面起着至关重要的作用,但确定表型背后的因果突变仍然很繁琐,这阻碍了它们的高通量应用。在这里,我们揭示了 EMS 诱变在秀丽隐杆线虫基因组中引起的不均匀突变率,表明突变频率受邻近序列背景和染色质状态的影响。利用这些因素,我们开发了一种机器学习增强的流水线,为秀丽隐杆线虫基因组创建了一个全面的 EMS 诱变概率图。该图谱基于这样一个原理,即因果突变在针对特定表型的遗传筛选中富集,而随机突变则不然。将该图谱应用于全基因组测序(WGS)数据的遗传抑制子,这些抑制子可以挽救秀丽隐杆线虫的纤毛动力蛋白突变体,我们成功地确定了因果突变,而无需生成重组近交系。这种方法可以适应于其他物种,为鉴定因果基因提供了一种可扩展的方法,并使正向遗传学筛选的效果得到恢复。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de0b/11379379/c6f545da2db6/pgen.1011377.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验