Suppr超能文献

甲状腺眼病静脉内糖皮质激素治疗反应的预测模型。

Prediction models of intravenous glucocorticoids therapy response in thyroid eye disease.

机构信息

Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.

出版信息

Eur Thyroid J. 2024 Aug 26;13(4). doi: 10.1530/ETJ-24-0122. Print 2024 Aug 1.

Abstract

BACKGROUND

Thyroid eye disease (TED) is an autoimmune orbital disease, with intravenous glucocorticoid (IVGC) therapy as the first-line treatment. Due to uncertain response rates and possible side effects, various prediction models have been developed to predict IVGC therapy outcomes.

METHODS

A thorough search was conducted in PubMed, Embase, and Web of Science databases. Data extraction included publication details, prediction model content, and performance. Statistical analysis was performed using R software, including heterogeneity evaluation, publication bias, subgroup analysis, and sensitivity analysis. Forest plots were utilized for result visualization.

RESULTS

Of the 12 eligible studies, 47 prediction models were extracted. All included studies exhibited a low-to-moderate risk of bias. The pooled area under the receiver operating characteristic curve (AUC) and the combined sensitivity and specificity for the models were 0.81, 0.75, and 0.79, respectively. In view of heterogeneity, multiple meta-regression and subgroup analysis were conducted, which showed that marker and modeling types may be the possible causes of heterogeneity (P < 0.001). Notably, imaging metrics alone (AUC = 0.81) or clinical characteristics combined with other markers (AUC = 0.87), incorporating with multivariate regression (AUC = 0.84) or radiomics analysis (AUC = 0.91), yielded robust and reliable prediction outcomes.

CONCLUSION

This meta-analysis comprehensively reviews the predictive models for IVGC therapy response in TED. It underscores that integrating clinical characteristics with laboratory or imaging indicators and employing advanced techniques like multivariate regression or radiomics analysis significantly enhance the efficacy of prediction. Our research findings offer valuable insights that can guide future studies on prediction models for IVGC therapy in TED.

摘要

背景

甲状腺眼病(TED)是一种自身免疫性眼眶疾病,静脉内糖皮质激素(IVGC)治疗是一线治疗方法。由于不确定的反应率和可能的副作用,已经开发了各种预测模型来预测 IVGC 治疗的结果。

方法

在 PubMed、Embase 和 Web of Science 数据库中进行了全面检索。数据提取包括出版物细节、预测模型内容和性能。使用 R 软件进行统计分析,包括异质性评估、发表偏倚、亚组分析和敏感性分析。森林图用于结果可视化。

结果

在 12 项合格研究中,提取了 47 个预测模型。所有纳入的研究均显示出低至中度的偏倚风险。模型的汇总受试者工作特征曲线下面积(AUC)和合并敏感性和特异性分别为 0.81、0.75 和 0.79。鉴于存在异质性,进行了多次荟萃回归和亚组分析,结果表明标志物和建模类型可能是异质性的原因(P<0.001)。值得注意的是,仅影像学指标(AUC=0.81)或临床特征结合其他标志物(AUC=0.87),结合多元回归(AUC=0.84)或放射组学分析(AUC=0.91),可产生稳健可靠的预测结果。

结论

本荟萃分析全面回顾了 TED 中 IVGC 治疗反应的预测模型。它强调了将临床特征与实验室或影像学指标相结合,并采用多元回归或放射组学分析等先进技术,可显著提高预测的效果。我们的研究结果为未来的 TED 中 IVGC 治疗预测模型研究提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b127/11378126/6a20355f772d/ETJ-24-0122fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验