Suppr超能文献

基于压力中心和机器学习的步态评分及临床风险因素对急性缺血性卒中功能结局的预测

Center of Pressure- and Machine Learning-based Gait Score and Clinical Risk Factors for Predicting Functional Outcome in Acute Ischemic Stroke.

作者信息

Jeon Eun-Tae, Lee Sang-Hun, Eun Mi-Yeon, Jung Jin-Man

机构信息

Department of Neurology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan.

Department of Neurology, Kyungpook National University Chilgok Hospital, Daegu; Department of Neurology, School of Medicine, Kyungpook National University, Daegu; Department of Neurology, Graduate School, Korea University, Seoul.

出版信息

Arch Phys Med Rehabil. 2024 Dec;105(12):2277-2285. doi: 10.1016/j.apmr.2024.08.006. Epub 2024 Aug 24.

Abstract

OBJECTIVES

To investigate whether machine learning (ML)-based center of pressure (COP) analysis for gait assessment, when used in conjunction with clinical information, offers additive benefits in predicting functional outcomes in patients with acute ischemic stroke.

DESIGN

A prospective, single-center cohort study.

SETTING

A tertiary hospital setting.

PARTICIPANTS

A total of 185 patients with acute ischemic stroke, capable of walking 10 m with or without a gait aid by day 7 postadmission. From these patients, 10,804 pairs of consecutive footfalls were included for analysis.

INTERVENTIONS

Not applicable.

MAIN OUTCOME MEASURES

The dependent variable was a 3-month poor functional outcome, defined as modified Rankin scale score ≥2. For independent variables, 65 clinical variables including demographics, anthropometrics, comorbidities, laboratory data, questionnaires, and drug history were included. Gait function was evaluated using a pressure-sensitive mat. Time-series COP data were parameterized into spatial and temporal variables and analyzed with logistic regression and 2 ML models (light gradient-boosting machine and multilayer perceptron [MLP]). We derived GAIT-AI output scores from the best-performing model analyzed COP data and constructed multivariable logistic regression models using clinical variables and the GAIT scores.

RESULTS

Among the included patients, 70 (37.8%) experienced unfavorable outcomes. The MLP model demonstrated the highest predictive performance with an area under the receiver operating characteristic curve (AUROC) of 0.799. Multivariable logistic regression identified age, initial National Institutes of Health Stroke Scale, and initial Fall Efficacy Scale-International as associated factors with unfavorable outcomes. The combined multivariable logistic regression incorporating COP-derived output scores improved the AUROC to 0.812.

CONCLUSIONS

Gait function, assessed through COP analysis, serves as a significant predictor of functional outcome in patients with acute ischemic stroke. ML-based COP analysis, when combined with clinical data, enhances the prediction of poor functional outcomes.

摘要

目的

探讨基于机器学习(ML)的压力中心(COP)分析用于步态评估时,结合临床信息,在预测急性缺血性脑卒中患者功能结局方面是否具有额外益处。

设计

一项前瞻性单中心队列研究。

地点

三级医院环境。

参与者

共185例急性缺血性脑卒中患者,入院后7天内能够借助或不借助步态辅助工具行走10米。从这些患者中,纳入10804对连续的脚步进行分析。

干预措施

不适用。

主要结局指标

因变量为3个月时功能结局不佳,定义为改良Rankin量表评分≥2。自变量包括65个临床变量,涵盖人口统计学、人体测量学、合并症、实验室数据、问卷和用药史。使用压力感应垫评估步态功能。将时间序列COP数据参数化为空间和时间变量,并通过逻辑回归和2种ML模型(轻梯度提升机和多层感知器[MLP])进行分析。我们从分析COP数据的最佳模型中得出GAIT-AI输出分数,并使用临床变量和GAIT分数构建多变量逻辑回归模型。

结果

在所纳入的患者中,70例(37.8%)出现不良结局。MLP模型表现出最高的预测性能,受试者工作特征曲线下面积(AUROC)为0.799。多变量逻辑回归确定年龄、初始美国国立卫生研究院卒中量表评分和初始国际跌倒效能量表为不良结局的相关因素。纳入COP衍生输出分数的联合多变量逻辑回归将AUROC提高到0.812。

结论

通过COP分析评估的步态功能是急性缺血性脑卒中患者功能结局的重要预测指标。基于ML的COP分析与临床数据相结合,可增强对不良功能结局的预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验