Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Key Lab of Conservation Tillage and Ecological Agriculture, Liaoning Province, Shenyang 110016, China.
CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Sci Total Environ. 2024 Nov 15;951:175749. doi: 10.1016/j.scitotenv.2024.175749. Epub 2024 Aug 24.
Soil organic matter has been well acknowledged as a natural solution to mitigate climate change and to maintain agricultural productivity. Microbial necromass is an important contributor to soil organic carbon (SOC) storage, and serves as a resource pool for microbial utilization. The trade-off between microbial births/deaths and resource acquisition might influence the fate of microbial necromass in the SOC pool, which remains poorly understood. We coupled soil microbial assembly with microbial necromass contribution to SOC on a long-term, no-till (NT) farm that received maize (Zea mays L.) stover mulching in amounts of 0 %, 33 %, 67 %, and 100 % for 8 y. We characterized soil microbial assembly using the Infer Community Assembly Mechanisms by Phylogenetic-bin-based null model (iCAMP), and microbial necromass using its biomarker amino sugars. We found that 100 % maize stover mulching (NT100) was associated with significantly lower amino sugars (66.4 mg g SOC) than the other treatments (>70 mg g SOC). Bacterial and fungal communities responded divergently to maize stover mulching: bacterial communities were positive for phylogenetic diversity, while fungal communities were positive for taxonomic richness. Soil bacterial communities influenced microbial necromass contribution to SOC through determinism on certain phylogenetic groups and bacterial bin composition, while fungal communities impacted SOC accumulation through taxonomic richness, which is enhanced by the positive contribution of dispersal limitation-dominated saprotrophic guilds. The prevalence of homogeneous selection and dispersal limitation on microbial cell wall-degrading bacteria, specifically Chitinophagaceae, along with increased soil fungal richness and interactions, might induce the decreased microbial necromass contribution to SOC under NT100. Our findings shed new light on the role of microbial assembly in shaping the dynamics of microbial necromass and SOC storage. This advances our understanding of the biological mechanisms that underpin microbial necromass associated with SOC storage, with implications for sustainable agriculture and mitigation of climate change.
土壤有机质已被广泛认为是缓解气候变化和保持农业生产力的一种自然解决方案。微生物残体是土壤有机碳(SOC)储存的重要贡献者,也是微生物利用的资源库。微生物的出生/死亡和资源获取之间的权衡可能会影响 SOC 库中微生物残体的命运,但这仍然知之甚少。我们在一个长期不耕(NT)的农场中,将土壤微生物组装与微生物残体对 SOC 的贡献进行了耦合,该农场在 8 年内接受了玉米(Zea mays L.)秸秆覆盖的量分别为 0%、33%、67%和 100%。我们使用基于基于系统发育-bin 的 null 模型(iCAMP)的推断群落组装机制(Infer Community Assembly Mechanisms by Phylogenetic-bin-based null model,iCAMP)来描述土壤微生物组装,并用其生物标志物氨基酸糖来描述微生物残体。我们发现,100%玉米秸秆覆盖(NT100)与其他处理相比(>70mg g SOC),显著降低了氨基酸糖(66.4mg g SOC)。细菌和真菌群落对玉米秸秆覆盖的反应不同:细菌群落对系统发育多样性呈正相关,而真菌群落对分类丰富度呈正相关。土壤细菌群落通过对某些系统发育群和细菌 bin 组成的确定性来影响微生物残体对 SOC 的贡献,而真菌群落通过分类丰富度来影响 SOC 积累,这是通过扩散限制主导的腐生菌的积极贡献增强的。微生物细胞壁降解菌(尤其是噬几丁质菌科)中同质选择和扩散限制的普遍性,以及土壤真菌丰富度和相互作用的增加,可能导致 NT100 下微生物残体对 SOC 的贡献减少。我们的研究结果为微生物组装在塑造微生物残体和 SOC 储存动态中的作用提供了新的认识。这提高了我们对与 SOC 储存相关的微生物残体的生物学机制的理解,对可持续农业和缓解气候变化具有重要意义。