Suppr超能文献

从重度抑郁症的特定症状角度来看:脑电图的功能连接分析以及治疗反应的潜在生物标志物。

In perspective of specific symptoms of major depressive disorder: Functional connectivity analysis of electroencephalography and potential biomarkers of treatment response.

机构信息

Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan.

In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.

出版信息

J Affect Disord. 2024 Dec 15;367:944-950. doi: 10.1016/j.jad.2024.08.139. Epub 2024 Aug 24.

Abstract

BACKGROUND

The symptom variability in major depressive disorder (MDD) complicates treatment assessment, necessitating a thorough understanding of MDD symptoms and potential biomarkers.

METHODS

In this prospective study, we enrolled 54 MDD patients and 39 controls. Over the course of weeks 1, 2, and 4 participants underwent evaluations, with electroencephalograms (EEG) recorded at baseline and week 1. Our investigation considered five previously identified syndromal factors derived from the 17-item Hamilton Depression Rating Scale (17-item HAMD) for assessing depression: core, insomnia, somatic anxiety, psychomotor-insight, and anorexia. We assessed treatment response and EEG characteristics across all syndromal factors and total scores, all of which are based on the 17-item HAMD. To analyze the topology of brain networks, we employed functional connectivity (FC) and a graph theory-based method across various frequency bands.

RESULTS

The healthy control group had notably higher values in delta band EEG FC compared to the MDD patient group. Similar distinctions were observed between the responder and non-responder patient groups. Further exploration of baseline FC values across distinct syndromal factors revealed significant variations among the core, psychomotor-insight, and anorexia subgroups when using a specific graph theory-based approach, focusing on global efficiency and average clustering coefficient.

LIMITATIONS

Different antidepressants were included in this study. Therefore, the results should be interpreted with caution.

CONCLUSIONS

Our findings suggest that delta band EEG FC holds promise as a valuable predictor of antidepressant efficacy. It demonstrates an ability to adapt to individual variations in depressive symptomatology, offering insights into personalized treatment for patients with depression.

摘要

背景

重度抑郁症(MDD)的症状变异性使治疗评估变得复杂,因此需要深入了解 MDD 的症状和潜在生物标志物。

方法

在这项前瞻性研究中,我们纳入了 54 例 MDD 患者和 39 例对照者。在第 1、2 和 4 周,参与者接受了评估,在基线和第 1 周记录了脑电图(EEG)。我们研究了从 17 项汉密尔顿抑郁量表(17-item HAMD)中确定的五个先前确定的综合征因素,用于评估抑郁:核心、失眠、躯体焦虑、精神运动洞察力和厌食。我们评估了所有综合征因素和总评分的治疗反应和 EEG 特征,这些都是基于 17 项 HAMD。为了分析脑网络的拓扑结构,我们在不同的频带中使用功能连接(FC)和基于图论的方法。

结果

与 MDD 患者组相比,健康对照组的 delta 波段 EEG FC 值明显更高。在反应者和非反应者患者组之间也观察到了类似的区别。进一步探索不同综合征因素的基线 FC 值,使用特定的基于图论的方法,重点关注全局效率和平均聚类系数,发现核心、精神运动洞察力和厌食亚组之间存在显著差异。

局限性

本研究纳入了不同的抗抑郁药。因此,结果应谨慎解释。

结论

我们的研究结果表明,delta 波段 EEG FC 可能是预测抗抑郁疗效的有价值的指标。它展示了适应抑郁症状个体变化的能力,为抑郁症患者的个体化治疗提供了见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验