Suppr超能文献

光谱基因组链模型方法提高了在地中海气候下小麦产量构成要素的预测能力。

Spectral-genomic chain-model approach enhances the wheat yield component prediction under the Mediterranean climate.

机构信息

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel.

Institute of Plant Sciences, Agriculture Research Organization (ARO)-Volcani Institute, Rishon LeZion, Israel.

出版信息

Physiol Plant. 2024 Jul-Aug;176(4):e14480. doi: 10.1111/ppl.14480.

Abstract

In light of the changing climate that jeopardizes future food security, genomic selection is emerging as a valuable tool for breeders to enhance genetic gains and introduce high-yielding varieties. However, predicting grain yield is challenging due to the genetic and physiological complexities involved and the effect of genetic-by-environment interactions on prediction accuracy. We utilized a chained model approach to address these challenges, breaking down the complex prediction task into simpler steps. A diversity panel with a narrow phenological range was phenotyped across three Mediterranean environments for various morpho-physiological and yield-related traits. The results indicated that a multi-environment model outperformed a single-environment model in prediction accuracy for most traits. However, prediction accuracy for grain yield was not improved. Thus, in an attempt to ameliorate the grain yield prediction accuracy, we integrated a spectral estimation of spike number, being a major wheat yield component, with genomic data. A machine learning approach was used for spike number estimation from canopy hyperspectral reflectance captured by an unmanned aerial vehicle. The spectral-based estimated spike number was utilized as a secondary trait in a multi-trait genomic selection, significantly improving grain yield prediction accuracy. Moreover, the ability to predict the spike number based on data from previous seasons implies that it could be applied to new trials at various scales, even in small plot sizes. Overall, we demonstrate here that incorporating a novel spectral-genomic chain-model workflow, which utilizes spectral-based phenotypes as a secondary trait, improves the predictive accuracy of wheat grain yield.

摘要

鉴于不断变化的气候危及未来的粮食安全,基因组选择作为一种有价值的工具,正在涌现,帮助培育者提高遗传增益并引入高产品种。然而,由于涉及的遗传和生理复杂性以及遗传与环境相互作用对预测准确性的影响,预测谷物产量具有挑战性。我们利用链式模型方法来解决这些挑战,将复杂的预测任务分解为更简单的步骤。利用一个具有狭窄物候范围的多样性面板,在三个地中海环境中对各种形态生理和产量相关性状进行了表型分析。结果表明,多环境模型在大多数性状的预测准确性方面优于单环境模型。然而,对于谷物产量的预测准确性并没有提高。因此,为了提高谷物产量的预测准确性,我们将穗数的光谱估计(穗数是小麦产量的主要组成部分)与基因组数据相结合。利用无人机获取的冠层高光谱反射率,采用机器学习方法估计穗数。基于光谱的估计穗数被用作多性状基因组选择的辅助性状,显著提高了谷物产量的预测准确性。此外,根据前几个季节的数据预测穗数的能力意味着它可以应用于各种规模的新试验,甚至在小面积的试验中。总的来说,我们在这里证明了,通过采用一种新的基于光谱的基因组链式模型工作流程,利用基于光谱的表型作为辅助性状,可以提高小麦谷物产量的预测准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验