Suppr超能文献

不同 CT 增强量化方法在预测术前手术治疗后胰腺癌复发中的表现。

Performance of different CT enhancement quantification methods as predictors of pancreatic cancer recurrence after upfront surgery.

机构信息

Clinic for Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.

Department of Neuroradiology, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.

出版信息

Sci Rep. 2024 Aug 26;14(1):19783. doi: 10.1038/s41598-024-70441-3.

Abstract

The prognosis of pancreatic cancer (PDAC) after tumor resection remains poor, mostly due to a high but variable risk of recurrence. A promising tool for improved prognostication is the quantification of CT tumor enhancement. For this, various enhancement formulas have been used in previous studies. However, a systematic comparison of these formulas is lacking. In the present study, we applied twenty-three previously published CT enhancement formulas to our cohort of 92 PDAC patients who underwent upfront surgery. We identified seven formulas that could reliably predict tumor recurrence. Using these formulas, weak tumor enhancement was associated with tumor recurrence at one and two years after surgery (p ≤ 0.030). Enhancement was inversely associated with adverse clinicopathological features. Low enhancement values were predictive of a high recurrence risk (Hazard Ratio ≥ 1.659, p ≤ 0.028, Cox regression) and a short time to recurrence (TTR) (p ≤ 0.027, log-rank test). Some formulas were independent predictors of TTR in multivariate models. Strikingly, almost all of the best-performing formulas measure solely tumor tissue, suggesting that normalization to non-tumor structures might be unnecessary. Among the top performers were also the absolute arterial/portal venous tumor attenuation values. These can be easily implemented in clinical practice for better recurrence prediction, thus potentially improving patient management.

摘要

胰腺癌(PDAC)切除术后的预后仍然较差,主要是因为复发风险高但变化较大。一种有前途的改善预后的工具是 CT 肿瘤增强的定量。为此,在以前的研究中使用了各种增强公式。然而,这些公式之间缺乏系统的比较。在本研究中,我们将 23 种以前发表的 CT 增强公式应用于我们的 92 名接受直接手术的 PDAC 患者队列。我们确定了七种可以可靠预测肿瘤复发的公式。使用这些公式,术后 1 年和 2 年肿瘤增强弱与肿瘤复发相关(p≤0.030)。增强与不良临床病理特征呈负相关。低增强值预示着高复发风险(危险比≥1.659,p≤0.028,Cox 回归)和复发时间短(TTR)(p≤0.027,对数秩检验)。一些公式在多变量模型中是 TTR 的独立预测因子。值得注意的是,表现最好的公式几乎都只测量肿瘤组织,这表明对非肿瘤结构进行归一化可能是不必要的。表现最好的公式中还包括绝对动脉/门静脉肿瘤衰减值。这些可以很容易地在临床实践中实施,以更好地预测复发,从而有可能改善患者的管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1cf/11347575/1f9643308640/41598_2024_70441_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验