Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain.
Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain.
Glia. 2024 Dec;72(12):2217-2230. doi: 10.1002/glia.24607. Epub 2024 Aug 26.
Astrocytes play a multifaceted role regulating brain glucose metabolism, ion homeostasis, neurotransmitters clearance, and water dynamics being essential in supporting synaptic function. Under different pathological conditions such as brain stroke, epilepsy, and neurodegenerative disorders, excitotoxicity plays a crucial role, however, the contribution of astrocytic activity in protecting neurons from excitotoxicity-induced damage is yet to be fully understood. In this work, we evaluated the effect of astrocytic activation by Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) on brain glucose metabolism in wild-type (WT) mice, and we investigated the effects of sustained astrocyte activation following an insult induced by intrahippocampal (iHPC) kainic acid (KA) injection using 2-deoxy-2-[F]-fluoro-D-glucose (F-FDG) positron emission tomography (PET) imaging, along with behavioral test, nuclear magnetic resonance (NMR) spectroscopy and histochemistry. Astrocytic Ca activation increased the F-FDG uptake, but this effect was not found when the study was performed in knock out mice for type-2 inositol 1,4,5-trisphosphate receptor (Ip3r2) nor in floxed mice to abolish glucose transporter 1 (GLUT1) expression in hippocampal astrocytes (GLUT1). Sustained astrocyte activation after KA injection reversed the brain glucose hypometabolism, restored hippocampal function, prevented neuronal death, and increased hippocampal GABA levels. The findings of our study indicate that astrocytic GLUT1 function is crucial for regulating brain glucose metabolism. Astrocytic Ca activation has been shown to promote adaptive changes that significantly contribute to mitigating the effects of KA-induced damage. This evidence suggests a protective role of activated astrocytes against KA-induced excitotoxicity.
星形胶质细胞在调节脑葡萄糖代谢、离子平衡、神经递质清除和水动力学方面发挥着多方面的作用,对支持突触功能至关重要。在脑卒中等不同的病理条件下,兴奋性毒性起着关键作用,然而,星形胶质细胞活动在保护神经元免受兴奋性毒性诱导的损伤方面的作用尚未得到充分理解。在这项工作中,我们评估了 Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) 对野生型 (WT) 小鼠脑葡萄糖代谢的星形胶质细胞激活的影响,并通过 2-脱氧-2-[F]-氟-D-葡萄糖 (F-FDG) 正电子发射断层扫描 (PET) 成像、行为测试、核磁共振 (NMR) 光谱和组织化学研究了海马内 (iHPC) 海人酸 (KA) 注射引起损伤后持续星形胶质细胞激活的影响。星形胶质细胞 Ca 激活增加了 F-FDG 的摄取,但在敲除 2 型肌醇 1,4,5-三磷酸受体 (Ip3r2) 的小鼠或敲除 GLUT1 在海马星形胶质细胞中的表达的 floxed 小鼠中没有发现这种效应 (GLUT1)。KA 注射后持续的星形胶质细胞激活逆转了脑葡萄糖代谢低下,恢复了海马功能,防止了神经元死亡,并增加了海马 GABA 水平。我们的研究结果表明,星形胶质细胞 GLUT1 功能对于调节脑葡萄糖代谢至关重要。星形胶质细胞 Ca 激活已被证明可促进适应性变化,这对减轻 KA 诱导的损伤有很大贡献。这些证据表明,激活的星形胶质细胞对 KA 诱导的兴奋性毒性具有保护作用。