Suppr超能文献

通过配位聚合物与有机聚合物的协同共混实现超质子传导性:耐用且柔性质子交换膜的制备

Superprotonic Conductivity by Synergistic Blending of Coordination Polymers with Organic Polymers: Fabrication of Durable and Flexible Proton Exchange Membranes.

作者信息

Dawn Mouli Das, Roy Sambit, Garai Abhijit, Banerjee Susanta, Biradha Kumar

机构信息

Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.

Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.

出版信息

ChemSusChem. 2025 Jan 14;18(2):e202401463. doi: 10.1002/cssc.202401463. Epub 2024 Oct 25.

Abstract

Creation of an efficient and cost-effective proton exchange membrane (PEM) has emerged as a propitious solution to address the challenges of renewable energy development. Coordination polymers (CPs) have garnered significant interest due to their multifunctional applications and moldability, along with long-range order. To leverage the potential of CPs in fuel cells, it is essential to integrate microcrystalline CPs into organic polymers to prepare membranes and avoid grain boundary issues. In this study, we designed and synthesized CPs containing imidazole and sulfonate moieties via gel-to-crystal transformation. The integration of CPs into the PVDF-PVP matrix resulted in superprotonic conductivity in the order of 10 S cm at room temperature (30 °C) and 98 % RH. The proton conductivity achieved with CP-integrated composite membrane was 4.69×10 S cm at 80 °C and 98 % RH, the highest among all CP/MOF-integrated PVDF-PVP membranes under hydrous conditions. The excellent compatibility of CPs with PVDF-PVP produced highly flexible membranes with superior mechanical, chemical, and thermal stability. About 25 times higher proton conductivity value was achieved with membrane, compared to intrinsic CPs, at RT and 98 % RH. Thus, we present a cost-effective CP-integrated mixed-matrix membrane with superprotonic conductivity and long-term durability for cutting-edge fuel cell development.

摘要

开发一种高效且具有成本效益的质子交换膜(PEM)已成为应对可再生能源发展挑战的一个有利解决方案。配位聚合物(CPs)因其多功能应用、可模塑性以及长程有序性而备受关注。为了利用CPs在燃料电池中的潜力,将微晶CPs整合到有机聚合物中以制备膜并避免晶界问题至关重要。在本研究中,我们通过凝胶到晶体的转变设计并合成了含有咪唑和磺酸根基团的CPs。将CPs整合到PVDF - PVP基质中,在室温(30°C)和98%相对湿度下产生了约10 S cm的超质子传导率。在80°C和98%相对湿度下,CPs整合复合膜实现的质子传导率为4.69×10 S cm,在所有含水条件下的CP/金属有机框架(MOF)整合PVDF - PVP膜中是最高的。CPs与PVDF - PVP的优异相容性产生了具有卓越机械、化学和热稳定性的高柔韧性膜。在室温及98%相对湿度下,该膜的质子传导率值比本征CPs高出约25倍。因此,我们提出了一种具有成本效益的CPs整合混合基质膜,具有超质子传导率和长期耐久性,用于前沿燃料电池的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c701/11739856/af6549aa9927/CSSC-18-e202401463-g010.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验