Lin Heng-Yi, Jiang Zhongyao, Liu Shi-Chun, Du Zhaoyi, Hsu Shih-En, Li Yun-Shan, Qiu Wei-Jia, Yang Hongta, Macdonald Thomas J, McLachlan Martyn A, Lin Chieh-Ting
Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
Department of Materials, Molecular Sciences Research Hub, Imperial College London, 82 Wood Ln, London W12 0BZ, U.K.
ACS Appl Mater Interfaces. 2024 Sep 11;16(36):47763-47772. doi: 10.1021/acsami.4c11052. Epub 2024 Aug 26.
Since the advent of formamidinium (FA)-based perovskite photovoltaics (PVs), significant performance enhancements have been achieved. However, a critical challenge persists: the propensity for void formation in the perovskite film at the buried perovskite-interlayer interface has a deleterious effect on device performance. With most emerging perovskite PVs adopting the p-i-n architecture, the specific challenge lies at the perovskite-hole transport layer (HTL) interface, with previous strategies to overcome this limitation being limited to specific perovskite-HTL combinations; thus, the lack of universal approaches represents a bottleneck. Here, we present a novel strategy that overcomes the formation of such voids (microstructural defects) through a film treatment with methylammonium chloride (MACl). Specifically, our work introduces MACl via a sequential deposition method, having a profound impact on the microstructural defect density at the critical buried interface. Our technique is independent of both the HTL and the perovskite film thickness, highlighting the universal nature of this approach. By employing device photoluminescence measurements and conductive atomic force microscopy, we reveal that when present, such voids impede charge extraction, thereby diminishing device short-circuit current. Through comprehensive steady-state and transient photoluminescence spectroscopy analysis, we demonstrate that by implementing our MACl treatment to remedy these voids, devices with reduced defect states, suppressed nonradiative recombination, and extended carrier lifetimes of up to 2.3 μs can be prepared. Furthermore, our novel treatment reduces the stringent constraints around antisolvent choice and dripping time, significantly extending the processing window for the perovskite absorber layer and offering significantly greater flexibility for device fabrication.
自从基于甲脒(FA)的钙钛矿光伏器件(PVs)问世以来,其性能已得到显著提升。然而,一个关键挑战依然存在:在掩埋的钙钛矿-中间层界面处,钙钛矿薄膜中形成空隙的倾向对器件性能产生了有害影响。由于大多数新兴的钙钛矿光伏器件采用p-i-n结构,具体挑战在于钙钛矿-空穴传输层(HTL)界面,以往克服这一限制的策略仅限于特定的钙钛矿-HTL组合;因此,缺乏通用方法成为了一个瓶颈。在此,我们提出了一种新颖的策略,通过用氯化铵(MACl)进行薄膜处理来克服此类空隙(微观结构缺陷)的形成。具体而言,我们的工作通过顺序沉积法引入MACl,这对关键掩埋界面处的微观结构缺陷密度产生了深远影响。我们的技术与HTL和钙钛矿薄膜厚度均无关,突出了该方法的通用性。通过采用器件光致发光测量和导电原子力显微镜,我们发现当存在此类空隙时,会阻碍电荷提取,从而降低器件的短路电流。通过全面的稳态和瞬态光致发光光谱分析,我们证明通过实施我们的MACl处理来修复这些空隙,可以制备出具有减少的缺陷态、抑制的非辐射复合以及高达2.3 μs的延长载流子寿命的器件。此外,我们的新颖处理减少了对反溶剂选择和滴注时间的严格限制,显著扩展了钙钛矿吸收层的加工窗口,并为器件制造提供了更大的灵活性。