Jing Shenghao, Lu Yang, Huang Yuting, Liu Hanzhou, Shen YuXing, Kuang Wuqi, Shen Huaqing, Liu Siliang, Zhang Zongliang, Liu Fangyang
School of Metallurgy and Environment, Central South University, Changsha, 410083, China.
Engineering Research Centre of Advanced Battery Materials, Ministry of Education, Changsha, 410083, China.
Adv Mater. 2024 Oct;36(40):e2312305. doi: 10.1002/adma.202312305. Epub 2024 Aug 27.
The silicon-based anodes are one of the promising anodes to achieve the high energy density of all-solid-state batteries (ASSBs). Nano silicon (nSi) is considered as a suitable anode material for assembling sheet-type sulfide ASSBs using thin free-standing LiPSCl (LPSC) membrane without causing short circuit. However, nSi anodes face a significant challenge in terms of rapid capacity degradation during cycling. To address this issue, dual-function LiSi modified nSi anode sheets are developed, in which LiSi serves a dual role by not only providing additional Li but also stabilizing the anode structure with its low Young's modulus upon cycling. Sheet-type ASSBs equipped with the LiSi modified nSi anode, thin LPSC membrane, and LiNiCoMnO (NCM811) cathode demonstrate exceptional cycle stability, with a capacity retention of 96.16% at 0.5 C (1.18 mA cm) after 100 cycles and maintain stability for 400 cycles. Furthermore, a remarkable cell-level energy density of 303.9 Wh kg is achieved at a high loading of 5.22 mAh cm, representing a leading level of sulfide ASSBs using electrolyte membranes at room temperature. Consequently, the chemically stable slurry process implemented in the fabrication of LiSi-modified nSi anode sheet paves the way for scalable applications of high-performance sulfide ASSBs.
硅基阳极是实现全固态电池(ASSB)高能量密度的有前景的阳极之一。纳米硅(nSi)被认为是一种合适的阳极材料,可用于组装使用薄的自支撑LiPSCl(LPSC)膜的片状硫化物ASSB,而不会导致短路。然而,nSi阳极在循环过程中容量快速衰减方面面临重大挑战。为了解决这个问题,开发了双功能LiSi改性的nSi阳极片,其中LiSi起到双重作用,不仅提供额外的锂,还在循环时以其低杨氏模量稳定阳极结构。配备LiSi改性nSi阳极、薄LPSC膜和LiNiCoMnO(NCM811)阴极的片状ASSB表现出出色的循环稳定性,在100次循环后,在0.5 C(1.18 mA cm)下容量保持率为96.16%,并能保持400次循环的稳定性。此外,在5.22 mAh cm的高负载下实现了303.9 Wh kg的显著电池级能量密度,代表了室温下使用电解质膜的硫化物ASSB的领先水平。因此,在LiSi改性nSi阳极片制造中实施的化学稳定浆料工艺为高性能硫化物ASSB的可扩展应用铺平了道路。