Khachatryan Knarik, Anter Simon, Reichling Michael, von Schmidsfeld Alexander
Institut für Physik, Universität Osnabrück, Barbarastr. 7, 49076 Osnabrück, Germany.
Beilstein J Nanotechnol. 2024 Aug 20;15:1070-1076. doi: 10.3762/bjnano.15.87. eCollection 2024.
Laser interferometry is a well-established and widely used technique for precise displacement measurements. In a non-contact atomic force microscope (NC-AFM), it facilitates the force measurement by recording the periodic displacement of an oscillating microcantilever. To understand signal generation in a NC-AFM-based Michelson-type interferometer, we evaluate the non-linear response of the interferometer to the harmonic displacement of the cantilever in the time domain. As the interferometer signal is limited in amplitude because of the spatial periodicity of the interferometer light field, an increasing cantilever oscillation amplitude creates an output signal with an increasingly complex temporal structure. By the fit of a model to the measured time-domain signal, all parameters governing the interferometric displacement signal can precisely be determined. It is demonstrated, that such an analysis specifically allows for the calibration of the cantilever oscillation amplitude with 2% accuracy.
激光干涉测量法是一种成熟且广泛应用于精确位移测量的技术。在非接触式原子力显微镜(NC-AFM)中,它通过记录振荡微悬臂梁的周期性位移来辅助进行力的测量。为了理解基于NC-AFM的迈克尔逊型干涉仪中的信号产生,我们在时域中评估干涉仪对悬臂梁谐波位移的非线性响应。由于干涉仪光场的空间周期性,干涉仪信号的幅度受到限制,悬臂梁振荡幅度的增加会产生具有越来越复杂时间结构的输出信号。通过将模型拟合到测量的时域信号,可以精确确定所有控制干涉位移信号的参数。结果表明这种分析方法能够以2%的精度对悬臂梁振荡幅度进行校准。