CSIR-Institute of Genomics & Integrative Biology, New Delhi 110025, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
J Phys Chem B. 2024 Sep 5;128(35):8409-8422. doi: 10.1021/acs.jpcb.4c04044. Epub 2024 Aug 27.
The thermodynamic landscape of the CRISPR/Cas9 system plays a crucial role in understanding and optimizing the performance of this revolutionary genome-editing technology. In this research, we utilized isothermal titration calorimetry and microscale thermophoresis techniques to thoroughly investigate the thermodynamic properties governing CRISPR/Cas9 interactions. Our findings revealed that the binding between sgRNA and Cas9 is primarily governed by entropy, which compensates for an unfavorable enthalpy change. Conversely, the interaction between the CRISPR RNP complex and the target DNA is characterized by a favorable enthalpy change, offsetting an unfavorable entropy change. Notably, both interactions displayed negative heat capacity changes, indicative of potential hydration, ionization, or structural rearrangements. However, we noted that the involvement of water molecules and counterions in the interactions is minimal, suggesting that structural rearrangements play a significant role in influencing the binding thermodynamics. These results offer a nuanced understanding of the energetic contributions and structural dynamics underlying CRISPR-mediated gene editing. Such insights are invaluable for optimizing the efficiency and specificity of CRISPR-based genome editing applications, ultimately advancing our ability to precisely manipulate genetic material in various organisms for research, therapeutic, and biotechnological purposes.
CRISPR/Cas9 系统的热力学景观在理解和优化这一革命性基因组编辑技术的性能方面起着至关重要的作用。在这项研究中,我们利用等温滴定量热法和微尺度热泳技术,深入研究了控制 CRISPR/Cas9 相互作用的热力学性质。我们的研究结果表明,sgRNA 与 Cas9 的结合主要受熵控制,这补偿了不利的焓变。相反,CRISPR RNP 复合物与靶 DNA 的相互作用则表现出有利的焓变,抵消了不利的熵变。值得注意的是,这两种相互作用都表现出负的热容变化,表明可能存在水合、离子化或结构重排。然而,我们注意到水分子和抗衡离子在相互作用中的参与程度很小,这表明结构重排在影响结合热力学方面起着重要作用。这些结果为 CRISPR 介导的基因编辑的能量贡献和结构动力学提供了细致的理解。这些见解对于优化基于 CRISPR 的基因组编辑应用的效率和特异性至关重要,最终提高了我们在各种生物体中精确操纵遗传物质的能力,以用于研究、治疗和生物技术目的。