Suppr超能文献

通过组装使二维材料在储能领域大放异彩。

Making 2D Materials Sparkle in Energy Storage via Assembly.

作者信息

Long Yu, Tao Ying, Lv Wei, Yang Quan-Hong

机构信息

Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.

出版信息

Acc Chem Res. 2024 Sep 17;57(18):2689-2699. doi: 10.1021/acs.accounts.4c00403. Epub 2024 Aug 27.

Abstract

ConspectusTwo-dimensional (2D) materials such as graphene and MXenes offer appealing opportunities in electrochemical energy storage due to their large surface area, tunable surface chemistry, and unique electronic properties. One of the primary challenges in utilizing these materials for practical electrodes, especially those with industrial-level thickness, is developing a highly interconnected and porous conductive network. This network is crucial for supporting continuous electron transport, rapid ion diffusion, and effective participation of all active materials in electrochemical reactions. Moreover, the demand for efficient energy storage in advanced electronic devices and electric vehicles has led to the need for not only thicker but also denser electrodes to achieve compact energy storage. Traditional densification methods often compromise between volumetric capacitance and ion-accessible surface area, which can diminish rate performance. As versatile building blocks, 2D materials can overcome these limitations through the assembly into complex superstructures such as 1D fibers, 2D thin films, and 3D porous networks, a capability less attainable by other nanomaterials.This Account explores the pathways from exfoliated 2D nanosheets to densely packed, yet porous assemblies tailored for compact energy storage. Focusing on graphene and MXenes, we delve into the intricate relationships between surface structure, assembly behaviors, and electrochemical performance. We emphasize the crucial role of surface chemistry and interfacial interactions in forming stable colloidal dispersions and subsequent macroscopic structures. Furthermore, we highlight how solvents, acting as spacers, are instrumental in microstructure formation and how capillary force-driven densification is essential for creating compact assemblies. With precise control over shrinkage, the customized dense assemblies can strike a balance between high packing density and sufficient porosity, ensuring efficient ion transport, mechanical stability, and high volumetric performance across various electrochemical energy storage technologies.Furthermore, we highlight the importance of understanding and manipulating the surface chemistry of 2D materials at the atomic level to optimize their assembly and enhance electrochemical behaviors. Advanced in situ characterizations with high temporal and spatial resolution are necessary to gain deeper insights into the complex assembly process. Moreover, the integration of machine learning and computational chemistry emerges as a promising method to predict and design new materials and assembly strategies, potentially accelerating the development of next-generation energy storage systems. Our insights into the assembly and densification of 2D materials provide a comprehensive foundation for future research and practical applications in compact, high-performance energy storage devices. This exploration sets the stage for a transformative approach to overcoming the challenges of current energy storage technologies, promising significant advancements in 2D materials in the field.

摘要

综述

二维(2D)材料,如石墨烯和MXenes,由于其大的表面积、可调节的表面化学性质和独特的电子特性,在电化学储能领域提供了诱人的机遇。将这些材料用于实际电极,尤其是具有工业级厚度的电极时,面临的主要挑战之一是开发高度互连且多孔的导电网络。该网络对于支持连续的电子传输、快速的离子扩散以及所有活性材料有效参与电化学反应至关重要。此外,先进电子设备和电动汽车对高效储能的需求导致不仅需要更厚而且需要更致密的电极来实现紧凑的能量存储。传统的致密化方法通常在体积电容和离子可及表面积之间进行权衡,这可能会降低倍率性能。作为通用的构建块,二维材料可以通过组装成复杂的超结构,如一维纤维、二维薄膜和三维多孔网络来克服这些限制,这是其他纳米材料较难实现的能力。

本综述探讨了从剥离的二维纳米片到为紧凑能量存储量身定制的密集堆积但多孔的组装体的途径。聚焦于石墨烯和MXenes,我们深入研究了表面结构、组装行为和电化学性能之间的复杂关系。我们强调表面化学和界面相互作用在形成稳定的胶体分散体及后续宏观结构中的关键作用。此外,我们突出了作为间隔物的溶剂在微观结构形成中的作用,以及毛细力驱动的致密化对于创建紧凑组装体的重要性。通过精确控制收缩,定制的致密组装体可以在高堆积密度和足够的孔隙率之间取得平衡,确保在各种电化学储能技术中实现高效的离子传输、机械稳定性和高体积性能。

此外,我们强调了在原子水平上理解和操纵二维材料表面化学以优化其组装并增强电化学行为的重要性。具有高时间和空间分辨率的先进原位表征对于深入了解复杂的组装过程是必要的。此外,机器学习和计算化学的整合成为预测和设计新材料及组装策略的一种有前途的方法,有可能加速下一代储能系统的开发。我们对二维材料组装和致密化的见解为紧凑、高性能储能设备的未来研究和实际应用提供了全面的基础。这一探索为克服当前储能技术挑战的变革性方法奠定了基础,有望在该领域的二维材料方面取得重大进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验