Niven Robert K, Cordier Laurent, Mohammad-Djafari Ali, Abel Markus, Quade Markus
School of Engineering and Technology, The University of New South Wales, Canberra, ACT 2600, Australia.
Institut Pprime, CNRS-Université de Poitiers-ISAE-ENSMA, 86360 Chasseneuil-du-Poitou, France.
Chaos. 2024 Aug 1;34(8). doi: 10.1063/5.0200684.
This study presents a Bayesian maximum a posteriori (MAP) framework for dynamical system identification from time-series data. This is shown to be equivalent to a generalized Tikhonov regularization, providing a rational justification for the choice of the residual and regularization terms, respectively, from the negative logarithms of the likelihood and prior distributions. In addition to the estimation of model coefficients, the Bayesian interpretation gives access to the full apparatus for Bayesian inference, including the ranking of models, the quantification of model uncertainties, and the estimation of unknown (nuisance) hyperparameters. Two Bayesian algorithms, joint MAP and variational Bayesian approximation, are compared to the least absolute shrinkage and selection operator (LASSO), ridge regression, and the sparse identification of nonlinear dynamics (SINDy) algorithms for sparse regression by application to several dynamical systems with added Gaussian or Laplace noise. For multivariate Gaussian likelihood and prior distributions, the Bayesian formulation gives Gaussian posterior and evidence distributions, in which the numerator terms can be expressed in terms of the Mahalanobis distance or "Gaussian norm" ||y-y^||M-12=(y-y^)⊤M-1(y-y^), where y is a vector variable, y^ is its estimator, and M is the covariance matrix. The posterior Gaussian norm is shown to provide a robust metric for quantitative model selection for the different systems and noise models examined.
本研究提出了一种用于从时间序列数据中识别动态系统的贝叶斯最大后验(MAP)框架。结果表明,这等同于广义蒂霍诺夫正则化,分别从似然分布和先验分布的负对数中为残差项和正则化项的选择提供了合理依据。除了估计模型系数外,贝叶斯解释还能使用完整的贝叶斯推理工具,包括模型排序、模型不确定性量化以及未知(干扰)超参数估计。通过应用于几个添加了高斯或拉普拉斯噪声的动态系统,将两种贝叶斯算法(联合MAP和变分贝叶斯近似)与最小绝对收缩和选择算子(LASSO)、岭回归以及用于稀疏回归的非线性动力学稀疏识别(SINDy)算法进行了比较。对于多元高斯似然分布和先验分布,贝叶斯公式给出高斯后验分布和证据分布,其中分子项可以用马氏距离或“高斯范数”||y - y^||M - 12 = (y - y^)⊤M - 1(y - y^)表示,其中y是向量变量,y^是其估计值,M是协方差矩阵。结果表明,后验高斯范数为所研究的不同系统和噪声模型的定量模型选择提供了一种稳健的度量。