Suppr超能文献

SINDy-SA框架:通过灵敏度分析增强非线性系统识别

SINDy-SA framework: enhancing nonlinear system identification with sensitivity analysis.

作者信息

Naozuka Gustavo T, Rocha Heber L, Silva Renato S, Almeida Regina C

机构信息

Laboratório Nacional de Computação Científica, Petrópolis, RJ Brazil.

Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN USA.

出版信息

Nonlinear Dyn. 2022;110(3):2589-2609. doi: 10.1007/s11071-022-07755-2. Epub 2022 Aug 30.

Abstract

UNLABELLED

Machine learning methods have revolutionized studies in several areas of knowledge, helping to understand and extract information from experimental data. Recently, these data-driven methods have also been used to discover structures of mathematical models. The sparse identification of nonlinear dynamics (SINDy) method has been proposed with the aim of identifying nonlinear dynamical systems, assuming that the equations have only a few important terms that govern the dynamics. By defining a library of possible terms, the SINDy approach solves a sparse regression problem by eliminating terms whose coefficients are smaller than a threshold. However, the choice of this threshold is decisive for the correct identification of the model structure. In this work, we build on the SINDy method by integrating it with a global sensitivity analysis (SA) technique that allows to hierarchize terms according to their importance in relation to the desired quantity of interest, thus circumventing the need to define the SINDy threshold. The proposed SINDy-SA framework also includes the formulation of different experimental settings, recalibration of each identified model, and the use of model selection techniques to select the best and most parsimonious model. We investigate the use of the proposed SINDy-SA framework in a variety of applications. We also compare the results against the original SINDy method. The results demonstrate that the SINDy-SA framework is a promising methodology to accurately identify interpretable data-driven models.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s11071-022-07755-2.

摘要

未标注

机器学习方法在多个知识领域引发了变革,有助于从实验数据中理解和提取信息。近来,这些数据驱动的方法也被用于发现数学模型的结构。稀疏识别非线性动力学(SINDy)方法旨在识别非线性动力系统,假定方程仅有少数几个重要项支配动力学。通过定义可能项的库,SINDy方法通过消除系数小于阈值的项来解决稀疏回归问题。然而,该阈值的选择对于正确识别模型结构至关重要。在这项工作中,我们基于SINDy方法,将其与全局敏感性分析(SA)技术相结合,该技术允许根据项相对于所需感兴趣量的重要性对其进行分层,从而避免了定义SINDy阈值的需要。所提出的SINDy-SA框架还包括不同实验设置的制定、每个识别模型的重新校准以及使用模型选择技术来选择最佳且最简约的模型。我们研究了所提出的SINDy-SA框架在各种应用中的使用情况。我们还将结果与原始SINDy方法进行了比较。结果表明,SINDy-SA框架是一种有前景的方法,可准确识别可解释的数据驱动模型。

补充信息

在线版本包含可在10.1007/s11071-022-07755-2获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd64/9424817/d5e4a1cc8b69/11071_2022_7755_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验