Suppr超能文献

混合纳米复合材料对湍流系统中传热效率和压降的影响:数值和机器学习见解的应用

Hybrid nanocomposites impact on heat transfer efficiency and pressure drop in turbulent flow systems: application of numerical and machine learning insights.

作者信息

Tao Hai, Aldlemy Mohammed Suleman, Homod Raad Z, Aksoy Muammer, Mohammed Mustafa K A, Alawi Omer A, Togun Hussein, Goliatt Leonardo, Khan Md Munir Hayet, Yaseen Zaher Mundher

机构信息

Key Laboratory of Advanced Manufacturing Technology of Ministry of Education, Guizhou University, Duyun, 550025, Guiyang, China.

School of Computer and Information, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China.

出版信息

Sci Rep. 2024 Aug 27;14(1):19882. doi: 10.1038/s41598-024-69648-1.

Abstract

This research explores the feasibility of using a nanocomposite from multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs) for thermal engineering applications. The hybrid nanocomposites were suspended in water at various volumetric concentrations. Their heat transfer and pressure drop characteristics were analyzed using computational fluid dynamics and artificial neural network models. The study examined flow regimes with Reynolds numbers between 5000 and 17,000, inlet fluid temperatures ranging from 293.15 to 333.15 K, and concentrations from 0.01 to 0.2% by volume. The numerical results were validated against empirical correlations for heat transfer coefficient and pressure drop, showing an acceptable average error. The findings revealed that the heat transfer coefficient and pressure drop increased significantly with higher inlet temperatures and concentrations, achieving approximately 45.22% and 452.90%, respectively. These results suggested that MWCNTs-GNPs nanocomposites hold promise for enhancing the performance of thermal systems, offering a potential pathway for developing and optimizing advanced thermal engineering solutions.

摘要

本研究探讨了使用由多壁碳纳米管(MWCNT)和石墨烯纳米片(GNP)组成的纳米复合材料用于热工程应用的可行性。将混合纳米复合材料以不同的体积浓度悬浮在水中。使用计算流体动力学和人工神经网络模型分析了它们的传热和压降特性。该研究考察了雷诺数在5000至17000之间、入口流体温度在293.15至333.15 K之间以及浓度在0.01至0.2%(体积)之间的流动状态。针对传热系数和压降的经验关联式对数值结果进行了验证,显示出可接受的平均误差。研究结果表明,传热系数和压降随着入口温度和浓度的升高而显著增加,分别达到约45.22%和452.90%。这些结果表明,MWCNT - GNP纳米复合材料在提高热系统性能方面具有潜力,为开发和优化先进的热工程解决方案提供了一条潜在途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99ee/11350136/0b5f32f1225b/41598_2024_69648_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验