Suppr超能文献

通过日常生活中的心率和 HRV 监测进行早产风险分层。

Preterm birth risk stratification through longitudinal heart rate and HRV monitoring in daily life.

机构信息

Department of Computing, University of Turku, Turku, Finland.

Department of Computer Science, University of California, Irvine, USA.

出版信息

Sci Rep. 2024 Aug 27;14(1):19896. doi: 10.1038/s41598-024-70773-0.

Abstract

Preterm birth (PTB) remains a global health concern, impacting neonatal mortality and lifelong health consequences. Traditional methods for estimating PTB rely on electronic health records or biomedical signals, limited to short-term assessments in clinical settings. Recent studies have leveraged wearable technologies for in-home maternal health monitoring, offering continuous assessment of maternal autonomic nervous system (ANS) activity and facilitating the exploration of PTB risk. In this paper, we conduct a longitudinal study to assess the risk of PTB by examining maternal ANS activity through heart rate (HR) and heart rate variability (HRV). To achieve this, we collect long-term raw photoplethysmogram (PPG) signals from 58 pregnant women (including seven preterm cases) from gestational weeks 12-15 to three months post-delivery using smartwatches in daily life settings. We employ a PPG processing pipeline to accurately extract HR and HRV, and an autoencoder machine learning model with SHAP analysis to generate explainable abnormality scores indicative of PTB risk. Our results reveal distinctive patterns in PTB abnormality scores during the second pregnancy trimester, indicating the potential for early PTB risk estimation. Moreover, we find that HR, average of interbeat intervals (AVNN), SD1SD2 ratio, and standard deviation of interbeat intervals (SDNN) emerge as significant PTB indicators.

摘要

早产 (PTB) 仍然是一个全球性的健康问题,影响新生儿死亡率和终身健康后果。传统的 PTB 估计方法依赖于电子健康记录或生物医学信号,仅限于临床环境中的短期评估。最近的研究利用可穿戴技术进行家庭产妇健康监测,对产妇自主神经系统 (ANS) 活动进行连续评估,并促进了 PTB 风险的探索。在本文中,我们通过检查心率 (HR) 和心率变异性 (HRV) 来进行一项纵向研究,以评估 PTB 的风险。为此,我们使用智能手表在日常生活环境中从妊娠 12-15 周到分娩后三个月,从 58 名孕妇(包括 7 名早产病例)中收集长期原始光体积描记图 (PPG) 信号。我们采用 PPG 处理管道来准确提取 HR 和 HRV,并采用具有 SHAP 分析的自动编码器机器学习模型来生成可解释的异常分数,指示 PTB 风险。我们的研究结果揭示了妊娠中期第二个三个月 PTB 异常分数的独特模式,表明早期 PTB 风险估计的潜力。此外,我们发现心率、平均心动间隔 (AVNN)、SD1SD2 比和心动间隔标准差 (SDNN) 是显著的 PTB 指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c501/11349982/f9287ddf64f8/41598_2024_70773_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验