Plant Molecular Biology and Biotechnology Division, CSIR Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir, 190005, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
Planta. 2024 Aug 27;260(4):80. doi: 10.1007/s00425-024-04515-x.
Mutation at A in lycopene-β-cyclase of Crocus (CstLcyB2a) sterically hinders its binding of δ-carotene without affecting lycopene binding, thereby diverting metabolic flux towards β-carotene and apocarotenoid biosynthesis. Crocus sativus, commonly known as saffron, has emerged as an important crop for research because of its ability to synthesize unique apocarotenoids such as crocin, picrocrocin and safranal. Metabolic engineering of the carotenoid pathway can prove a beneficial strategy for enhancing the quality of saffron and making it resilient to changing climatic conditions. Here, we demonstrate that introducing a novel mutation at A in stigma-specific lycopene-β-cyclase of Crocus (CstLcyB2a) sterically hinders its binding of δ-carotene, but does not affect lycopene binding, thereby diverting metabolic flux towards β-carotene formation. Thus, A126L-CstLcyB2a expression in lycopene-accumulating bacterial strains resulted in enhanced production of β-carotene. Transient expression of A126L-CstLcyB2a in C. sativus stigmas enhanced biosynthesis of crocin. Its stable expression in Nicotiana tabacum enhanced β-branch carotenoids and phyto-hormones such as abscisic acid (ABA) and gibberellic acids (GA's). N. tabacum transgenic lines showed better growth performance and photosynthetic parameters including maximum quantum efficiency (Fv/Fm) and light-saturated capacity of linear electron transport. Exogenous application of hormones and their inhibitors demonstrated that a higher ratio of GA/ABA has positive effects on biomass of wild-type and transgenic plants. Thus, these findings provide a platform for the development of new-generation crops with improved productivity, quality and stress tolerance.
突变体 A 在藏红花(CstLcyB2a)的番茄红素-β-环化酶中阻碍了 δ-胡萝卜素的结合,而不影响番茄红素的结合,从而使代谢通量转向 β-胡萝卜素和类胡萝卜素生物合成。藏红花,通常被称为藏红花,因其能够合成独特的类胡萝卜素,如藏红花酸、西红花酸和西红花醛而成为研究的重要作物。通过对类胡萝卜素途径进行代谢工程,可以提高藏红花的品质,并使其能够适应气候变化的有益策略。在这里,我们证明在藏红花柱头特异性番茄红素-β-环化酶(CstLcyB2a)中的 A 点引入一个新的突变体 A126L 阻碍了其与 δ-胡萝卜素的结合,但不影响番茄红素的结合,从而使代谢通量转向β-胡萝卜素的形成。因此,在富含番茄红素的细菌菌株中表达 A126L-CstLcyB2a 导致β-胡萝卜素产量增加。A126L-CstLcyB2a 在藏红花柱头中的瞬时表达增强了藏红花酸的生物合成。其在烟草中的稳定表达增强了β-支链类胡萝卜素和植物激素,如脱落酸(ABA)和赤霉素(GA's)。烟草转基因株系表现出更好的生长性能和光合参数,包括最大量子效率(Fv/Fm)和光饱和线性电子传递能力。激素及其抑制剂的外源应用表明,GA/ABA 比值较高对野生型和转基因植物的生物量有积极影响。因此,这些发现为开发新一代具有提高生产力、品质和抗逆性的作物提供了一个平台。