Elayan Ismael A, Brown Alex
Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada.
J Phys Chem A. 2024 Sep 12;128(36):7511-7523. doi: 10.1021/acs.jpca.3c08402. Epub 2024 Aug 27.
Two-photon absorption (2PA), where a pair of photons are absorbed simultaneously, is recognized as a potent bioimaging technique, which depends on the quantified 2PA probability, defined as cross-section (σ). The absorbed photons either have equivalent (ω = ω) or different frequencies (ω ≠ ω), where the former is degenerate 2PA (D-2PA) and the latter is nondegenerate 2PA (ND-2PA). ND-2PA is of particular interest since it is a promising imaging technology with flexibility of photon frequencies and enhanced cross sections, however, it remains a relatively unexplored area compared to D-2PA. This work utilizes time-dependent density functional theory (TD-DFT) and second-order approximate coupled-cluster with the resolution-of-identity approximation (RI-CC2), for the excitation from S to S, to investigate σ and σ of FP chromophore models. Interestingly, comparing CAM-B3LYP with the RI-CC2 computations shows qualitative and, in fact, near quantitative agreement in the computed improvements of σ for comparable (relative) frequency detunings, despite the known underestimations of 2PA cross sections, for TD-DFT results relative to RI-CC2 values. As expected from the 2-state model, the computed values of σ are quantitatively larger than σ, where chromophores with the largest values of σ show greater potential for σ improvement. Anionic chromophores demonstrated improvements up to 14%, while substantial enhancements were observed in neutral chromophores with some achieving a 30% increase. This work investigates the ND-2PA photophysical characteristics of FP chromophores and identifies qualitative patterns in the computed properties of ND-2PA relative to D-2PA.
双光子吸收(2PA),即一对光子同时被吸收,被认为是一种强大的生物成像技术,它取决于量化的双光子吸收概率,定义为截面(σ)。被吸收的光子要么具有相同频率(ω = ω),要么具有不同频率(ω ≠ ω),前者是简并双光子吸收(D-2PA),后者是非简并双光子吸收(ND-2PA)。ND-2PA特别受关注,因为它是一种很有前景的成像技术,具有光子频率灵活性和增强的截面,然而,与D-2PA相比,它仍然是一个相对未被充分探索的领域。这项工作利用含时密度泛函理论(TD-DFT)和具有单位分辨近似的二阶近似耦合簇方法(RI-CC2),用于从S到S的激发,来研究荧光蛋白发色团模型的σ和σ。有趣的是,将CAM-B3LYP与RI-CC2计算结果进行比较表明,对于可比(相对)频率失谐,在计算得到的σ改进方面,定性上甚至实际上几乎是定量一致的,尽管已知TD-DFT结果相对于RI-CC2值对双光子吸收截面有低估。正如二态模型所预期的那样,计算得到的σ值在数量上大于σ,其中σ值最大的发色团显示出更大的σ改进潜力。阴离子发色团的改进高达14%,而中性发色团则有显著增强,有些增加了30%。这项工作研究了荧光蛋白发色团的非简并双光子吸收光物理特性,并确定了相对于简并双光子吸收在计算得到的非简并双光子吸收特性中的定性模式。