School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China.
Department of Atmospheric & Oceanic Sciences, University of California, Los Angeles, Los Angeles, California 90095, United States.
Environ Sci Technol. 2024 Sep 10;58(36):15938-15948. doi: 10.1021/acs.est.4c02926. Epub 2024 Aug 27.
Accurately mapping ground-level ozone concentrations at high spatiotemporal resolution (daily, 1 km) is essential for evaluating human exposure and conducting public health assessments. This requires identifying and understanding a proxy that is well-correlated with ground-level ozone variation and available with spatiotemporal high-resolution data. This study introduces a high-resolution ozone modeling method utilizing the XGBoost algorithm with satellite-derived land surface temperature (LST) as the primary predictor. Focusing on China in 2019, our model achieved a cross-validation of 0.91 and a root-mean-square error (RMSE) of 13.51 μg/m. We provide detailed maps highlighting ground-level ozone concentrations in urban areas, uncovering spatial variations previously unresolved, along with time series aligning with established understandings of ozone dynamics. Our local interpretation of the machine learning model underscores the significant contribution of LST to spatiotemporal ozone variations, surpassing other meteorological, pollutant, and geographical predictors in its influence. Validation results indicate that model performance decreases as spatial resolution becomes coarser, with decreasing from 0.91 for the 1 km model to 0.85 for the 25 km model. The methodology and data sets generated by this study offer new insights into ground-level ozone variability and mapping and can significantly aid in exposure assessment and epidemiological research related to this critical environmental challenge.
准确绘制高时空分辨率(每日、1 公里)的地面臭氧浓度图对于评估人体暴露和进行公共卫生评估至关重要。这需要识别和理解与地面臭氧变化密切相关且具有时空高分辨率数据的代理变量。本研究提出了一种利用 XGBoost 算法的高分辨率臭氧建模方法,以卫星衍生的地表温度(LST)作为主要预测因子。以 2019 年的中国为重点,我们的模型在交叉验证中的表现为 0.91,均方根误差(RMSE)为 13.51μg/m。我们提供了详细的地图,突出显示了城市地区的地面臭氧浓度,揭示了以前无法解决的空间变化,同时还提供了与臭氧动力学已有认识相一致的时间序列。我们对机器学习模型的本地解释强调了 LST 对时空臭氧变化的重要贡献,其影响超过了其他气象、污染物和地理预测因子。验证结果表明,随着空间分辨率变得粗糙,模型性能会下降,从 1 公里模型的 0.91 下降到 25 公里模型的 0.85。本研究生成的方法和数据集为地面臭氧变异性和制图提供了新的见解,并可以极大地帮助进行与这一关键环境挑战相关的暴露评估和流行病学研究。