Rekabi Bana Fatemeh, Krajník Tomáš, Arvin Farshad
Swarm and Computational Intelligence Laboratory (SwaCIL), Department of Computer Science, Durham University, Durham, United Kingdom.
Artificial Intelligence Center, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia.
Front Robot AI. 2024 Aug 13;11:1375393. doi: 10.3389/frobt.2024.1375393. eCollection 2024.
Cooperative multi-agent systems make it possible to employ miniature robots in order to perform different experiments for data collection in wide open areas to physical interactions with test subjects in confined environments such as a hive. This paper proposes a new multi-agent path-planning approach to determine a set of trajectories where the agents do not collide with each other or any obstacle. The proposed algorithm leverages a risk-aware probabilistic roadmap algorithm to generate a map, employs node classification to delineate exploration regions, and incorporates a customized genetic framework to address the combinatorial optimization, with the ultimate goal of computing safe trajectories for the team. Furthermore, the proposed planning algorithm makes the agents explore all subdomains in the workspace together as a formation to allow the team to perform different tasks or collect multiple datasets for reliable localization or hazard detection. The objective function for minimization includes two major parts, the traveling distance of all the agents in the entire mission and the probability of collisions between the agents or agents with obstacles. A sampling method is used to determine the objective function considering the agents' dynamic behavior influenced by environmental disturbances and uncertainties. The algorithm's performance is evaluated for different group sizes by using a simulation environment, and two different benchmark scenarios are introduced to compare the exploration behavior. The proposed optimization method establishes stable and convergent properties regardless of the group size.
协作式多智能体系统使得使用微型机器人成为可能,以便在广阔开放区域进行不同的实验以收集数据,或在诸如蜂巢这样的受限环境中与测试对象进行物理交互。本文提出了一种新的多智能体路径规划方法,以确定一组智能体彼此之间以及与任何障碍物都不碰撞的轨迹。所提出的算法利用一种风险感知概率地图算法来生成地图,采用节点分类来划分探索区域,并纳入一个定制的遗传框架来解决组合优化问题,最终目标是为团队计算安全轨迹。此外,所提出的规划算法使智能体作为一个编队一起探索工作空间中的所有子域,以便团队能够执行不同任务或收集多个数据集用于可靠定位或危险检测。最小化的目标函数包括两个主要部分,即整个任务中所有智能体的行进距离以及智能体之间或智能体与障碍物之间碰撞的概率。使用一种采样方法来确定考虑到受环境干扰和不确定性影响的智能体动态行为的目标函数。通过使用模拟环境对不同组规模评估该算法的性能,并引入两种不同的基准场景来比较探索行为。所提出的优化方法无论组规模如何都具有稳定和收敛的特性。