Daniel Jacob E, Weaver S Ivan, Matthias Brad R, Golden River, George Gavin M, Kerpal Christian, Donley Carrie L, Jarocha Lauren E, Anderson Mary E
Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States.
Department of Physics and Astronomy, UNC Asheville, Asheville, North Carolina 28804, United States.
J Phys Chem C Nanomater Interfaces. 2024 Aug 8;128(33):13888-13899. doi: 10.1021/acs.jpcc.4c02602. eCollection 2024 Aug 22.
Tetrahedrite (CuSbS) and famatinite (CuSbS) are good candidates for green energy applications because they possess promising thermoelectric and photovoltaic properties as well as contain earth-abundant and nontoxic constituents. Herein, X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and electron paramagnetic resonance spectroscopy (EPR) methods examined inherent electronic properties and interatomic magnetic interactions of Cu-site doped tetrahedrite and famatinite nanomaterials. An energy-efficient modified polyol method was utilized for the synthesis of tetrahedrite and famatinite nanoparticles doped on the Cu-site with Zn, Fe, Ni, Mn, and Co. This is the first parallel study of tetrahedrite and famatinite nanomaterials with XPS, UPS, and EPR methods alongside a systematic analysis of dopant-dependent effects on the electronic structure and magnetic interactions for each material. XPS showed that the Cu and Sb species in tetrahedrite and famatinite possess different oxidation states, while UPS characterization reveals larger dopant-dependent shifts in the work function for tetrahedrite nanoparticles (4.21 to 4.79 eV) than for famatinite nanoparticles (4.57 to 4.77 eV). Finally, all famatinite nanoparticles display an EPR signal, indicating trace amounts of paramagnetic Cu(II) present below the detection limit of XPS. For tetrahedrite, EPR signatures were observed only for the Zn-doped and Mn-doped nanoparticles, suggesting signal broadening from Cu-Cu spin exchange or spin-lattice relaxation. This study demonstrates the complementary nature of XPS and EPR techniques for studying the oxidation states of metals in solid-state nanomaterials. Comparing the electronic and magnetic properties of tetrahedrite and famatinite while studying the impact of dopant incorporation will guide future endeavors in designing sustainable, high-performance materials for renewable energy applications.
黝铜矿(CuSbS)和硫锑铜银矿(CuSbS)是绿色能源应用的理想候选材料,因为它们具有良好的热电和光伏性能,并且含有储量丰富且无毒的成分。在此,采用X射线光电子能谱(XPS)、紫外光电子能谱(UPS)和电子顺磁共振光谱(EPR)方法研究了铜位点掺杂的黝铜矿和硫锑铜银矿纳米材料的固有电子性质和原子间磁相互作用。采用一种节能的改进多元醇法合成了铜位点掺杂锌、铁、镍、锰和钴的黝铜矿和硫锑铜银矿纳米颗粒。这是首次同时使用XPS、UPS和EPR方法对黝铜矿和硫锑铜银矿纳米材料进行平行研究,并对每种材料中掺杂剂对电子结构和磁相互作用的影响进行系统分析。XPS表明,黝铜矿和硫锑铜银矿中的铜和锑物种具有不同的氧化态,而UPS表征显示,黝铜矿纳米颗粒(4.21至4.79 eV)的功函数随掺杂剂的变化比硫锑铜银矿纳米颗粒(4.57至4.77 eV)更大。最后,所有硫锑铜银矿纳米颗粒都显示出EPR信号,表明存在低于XPS检测限的痕量顺磁性铜(II)。对于黝铜矿,仅在锌掺杂和锰掺杂的纳米颗粒中观察到EPR信号特征,表明信号因铜-铜自旋交换或自旋-晶格弛豫而展宽。这项研究证明了XPS和EPR技术在研究固态纳米材料中金属氧化态方面的互补性。在研究掺杂剂掺入的影响时比较黝铜矿和硫锑铜银矿的电子和磁性性质,将为未来设计用于可再生能源应用的可持续高性能材料提供指导。