Suppr超能文献

中国嘉兴成年人代谢综合征的早期识别:利用多因素逻辑回归模型

Early Identification of Metabolic Syndrome in Adults of Jiaxing, China: Utilizing a Multifactor Logistic Regression Model.

作者信息

Hu Shiyu, Chen Wenyu, Tan Xiaoli, Zhang Ye, Wang Jiaye, Huang Lifang, Duan Jianwen

机构信息

Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China.

Department of Respiratory Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.

出版信息

Diabetes Metab Syndr Obes. 2024 Aug 23;17:3087-3102. doi: 10.2147/DMSO.S468718. eCollection 2024.

Abstract

PURPOSE

The purpose of this study is to develop and validate a clinical prediction model for diagnosing Metabolic Syndrome (MetS) based on indicators associated with its occurrence.

PATIENTS AND METHODS

This study included a total of 26,637 individuals who underwent health examinations at the Jiaxing First Hospital Health Examination Center from January 19, 2022, to December 31, 2022. They were randomly divided into training (n = 18645) and validation (n = 7992) sets in a 7:3 ratio. Firstly, the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm was employed for variable selection. Subsequently, a multifactor Logistic regression analysis was conducted to establish the predictive model, accompanied by nomograms. Thirdly, model validation was performed using Receiver Operating Characteristic (ROC) curves, Harrell's concordance index (C-index), calibration plots, and Decision Curve Analysis (DCA), followed by internal validation.

RESULTS

In this study, six predictive indicators were selected, including Body Mass Index, Triglycerides, Blood Pressure, High-Density Lipoprotein Cholesterol, Low-Density Lipoprotein Cholesterol, and Fasting Blood Glucose. The model demonstrated excellent predictive performance, with an AUC of 0.978 (0.976-0.980) for the training set and 0.977 (0.974-0.980) for the validation set in the nomogram. Calibration curves indicated that the model possessed good calibration ability (Training set: Emax 0.081, Eavg 0.005, = 0.580; Validation set: Emax 0.062, Eavg 0.007, = 0.829). Furthermore, decision curve analysis suggested that applying the nomogram for diagnosis is more beneficial when the threshold probability of MetS is less than 89%, compared to either treating-all or treating-none at all.

CONCLUSION

We developed and validated a nomogram based on MetS risk factors, which can effectively predict the occurrence of MetS. The proposed nomogram demonstrates significant discriminative ability and clinical applicability. It can be utilized to identify variables and risk factors for diagnosing MetS at an early stage.

摘要

目的

本研究旨在基于与代谢综合征(MetS)发生相关的指标,开发并验证一种用于诊断代谢综合征的临床预测模型。

患者与方法

本研究共纳入26637名于2022年1月19日至2022年12月31日在嘉兴市第一医院健康体检中心接受健康检查的个体。他们以7:3的比例被随机分为训练集(n = 18645)和验证集(n = 7992)。首先,采用最小绝对收缩和选择算子(LASSO)回归算法进行变量选择。随后,进行多因素Logistic回归分析以建立预测模型,并绘制列线图。第三,使用受试者工作特征(ROC)曲线、Harrell一致性指数(C指数)、校准图和决策曲线分析(DCA)进行模型验证,随后进行内部验证。

结果

本研究选择了六个预测指标,包括体重指数、甘油三酯、血压、高密度脂蛋白胆固醇、低密度脂蛋白胆固醇和空腹血糖。该模型表现出优异的预测性能,在列线图中,训练集的AUC为0.978(0.976 - 0.980),验证集的AUC为0.977(0.974 - 0.980)。校准曲线表明该模型具有良好的校准能力(训练集:Emax 0.081,Eavg 0.005, = 0.580;验证集:Emax 0.062,Eavg 0.007, = 0.829)。此外,决策曲线分析表明,当MetS的阈值概率小于89%时,应用列线图进行诊断比全部治疗或不治疗更有益。

结论

我们开发并验证了一种基于MetS危险因素的列线图,它可以有效预测MetS的发生。所提出的列线图具有显著的判别能力和临床适用性。它可用于识别早期诊断MetS的变量和危险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cf3/11348986/9ff8b50dae68/DMSO-17-3087-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验