Suppr超能文献

利用声学空间捕捉-再捕获技术进行自动动物密度估计。

Towards automated animal density estimation with acoustic spatial capture-recapture.

机构信息

Centre for Research into Ecological and Environmental Modelling, School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9LZ, Scotland.

School of Computer Science, University of St Andrews, St Andrews, Fife, KY16 9SX, Scotland.

出版信息

Biometrics. 2024 Jul 1;80(3). doi: 10.1093/biomtc/ujae081.

Abstract

Passive acoustic monitoring can be an effective way of monitoring wildlife populations that are acoustically active but difficult to survey visually, but identifying target species calls in recordings is non-trivial. Machine learning (ML) techniques can do detection quickly but may miss calls and produce false positives, i.e., misidentify calls from other sources as being from the target species. While abundance estimation methods can address the former issue effectively, methods to deal with false positives are under-investigated. We propose an acoustic spatial capture-recapture (ASCR) method that deals with false positives by treating species identity as a latent variable. Individual-level outputs from ML techniques are treated as random variables whose distributions depend on the latent identity. This gives rise to a mixture model likelihood that we maximize to estimate call density. We compare our method to existing methods by applying it to an ASCR survey of frogs and simulated acoustic surveys of gibbons based on real gibbon acoustic data. Estimates from our method are closer to ASCR applied to the dataset without false positives than those from a widely used false positive "correction factor" method. Simulations show our method to have bias close to zero and accurate coverage probabilities and to perform substantially better than ASCR without accounting for false positives.

摘要

被动声学监测可以成为监测声音活跃但难以通过视觉进行调查的野生动物种群的有效方法,但识别记录中的目标物种叫声并不容易。机器学习 (ML) 技术可以快速进行检测,但可能会错过叫声并产生假阳性,即误将来自其他来源的叫声识别为目标物种的叫声。虽然丰度估计方法可以有效地解决前者的问题,但处理假阳性的方法还没有得到充分研究。我们提出了一种声学空间捕获-再捕获 (ASCR) 方法,通过将物种身份视为潜在变量来处理假阳性。将 ML 技术的个体水平输出视为随机变量,其分布取决于潜在身份。这产生了一种混合模型似然度,我们通过最大化该似然度来估计叫声密度。我们通过将其应用于基于真实 gibbon 声学数据的青蛙 ASCR 调查和 gibbon 声学模拟调查来比较我们的方法与现有方法。与广泛使用的假阳性“校正因子”方法相比,我们的方法得到的估计值更接近没有假阳性的 ASCR 应用于数据集的估计值。模拟结果表明,我们的方法具有接近零的偏差和准确的覆盖率概率,并且在不考虑假阳性的情况下表现明显优于不考虑假阳性的 ASCR。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验