文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

巨噬细胞自噬通过降解TARM1抑制肾脏炎症,从而预防急性肾损伤。

Macrophage autophagy protects against acute kidney injury by inhibiting renal inflammation through the degradation of TARM1.

作者信息

Huang Xiao-Rong, Ye Lin, An Ning, Wu Chun-Yu, Wu Hong-Luan, Li Hui-Yuan, Huang Yan-Heng, Ye Qiao-Ru, Liu Ming-Dong, Yang La-Wei, Liu Jian-Xing, Tang Ji-Xin, Pan Qing-Jun, Wang Peng, Sun Lin, Xia Yin, Lan Hui-Yao, Yang Chen, Liu Hua-Feng

机构信息

Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.

Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China.

出版信息

Autophagy. 2025 Jan;21(1):120-140. doi: 10.1080/15548627.2024.2393926. Epub 2024 Sep 8.


DOI:10.1080/15548627.2024.2393926
PMID:39193910
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11702950/
Abstract

Macroautophagy/autophagy activation in renal tubular epithelial cells protects against acute kidney injury (AKI). However, the role of immune cell autophagy, such as that involving macrophages, in AKI remains unclear. In this study, we discovered that macrophage autophagy was an adaptive response during AKI as mice with macrophage-specific autophagy deficiency () exhibited higher serum creatinine, more severe renal tubule injury, increased infiltration of ADGRE1/F4/80 macrophages, and elevated expression of inflammatory factors compared to WT mice during AKI induced by either LPS or unilateral ischemia-reperfusion. This was further supported by adoptive transfer of macrophages, but not WT macrophages, to cause more severe AKI in clodronate liposomes-induced macrophage depletion mice. Similar results were also obtained in vitro that bone marrow-derived macrophages (BMDMs) lacking largely increased pro-inflammatory cytokine expression in response to LPS and IFNG. Mechanistically, we uncovered that deletion significantly upregulated the protein expression of TARM1 (T cell-interacting, activating receptor on myeloid cells 1), whereas inhibition of TARM1 suppressed LPS- and IFNG-induced inflammatory responses in RAW 264.7 macrophages. The E3 ubiquitin ligases MARCHF1 and MARCHF8 ubiquitinated TARM1 and promoted its degradation in an autophagy-dependent manner, whereas silencing or mutation of the functional domains of MARCHF1 and MARCHF8 abolished TARM1 degradation. Furthermore, we found that ubiquitinated TARM1 was internalized from plasma membrane into endosomes, and then recruited by the ubiquitin-binding autophagy receptors TAX1BP1 and SQSTM1 into the autophagy-lysosome pathway for degradation. In conclusion, macrophage autophagy protects against AKI by inhibiting renal inflammation through the MARCHF1- and MARCHF8-mediated degradation of TARM1. AKI, acute kidney injury; ATG, autophagy related; Baf, bafilomycin A; BMDMs, bone marrow-derived macrophages; CCL2/MCP-1, C-C motif chemokine ligand 2; CHX, cycloheximide; CQ, chloroquine; IFNG, interferon gamma; IL, interleukin; IR, ischemia-reperfusion; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; LPS, lipopolysaccharide; MARCHF, membrane associated ring-CH-type finger; NC, negative control; NFKB, nuclear factor of kappa light polypeptide gene enhancer in B cells; NLRP3, NLR family, pyrin domain containing 3; NOS2, nitric oxide synthase 2, inducible; Rap, rapamycin; Wort, wortmannin; RT-qPCR, real-time quantitative polymerase chain reaction; Scr, serum creatinine; SEM, standard error of mean; siRNA, small interfering RNA; SYK, spleen tyrosine kinase; TARM1, T cell-interacting, activating receptor on myeloid cells 1; TAX1BP1, Tax1 (human T cell leukemia virus type I) binding protein 1; TECs, tubule epithelial cells; TNF, tumor necrosis factor; WT, wild type.

摘要

肾小管上皮细胞中的巨自噬/自噬激活可预防急性肾损伤(AKI)。然而,免疫细胞自噬,如巨噬细胞自噬,在AKI中的作用仍不清楚。在本研究中,我们发现巨噬细胞自噬是AKI期间的一种适应性反应,因为与野生型(WT)小鼠相比,巨噬细胞特异性自噬缺陷()小鼠在脂多糖(LPS)或单侧缺血再灌注诱导的AKI期间,血清肌酐水平更高,肾小管损伤更严重,ADGRE1/F4/80巨噬细胞浸润增加,炎症因子表达升高。通过将巨噬细胞而非WT巨噬细胞过继转移到氯膦酸脂质体诱导的巨噬细胞耗竭小鼠中导致更严重的AKI,进一步支持了这一观点。在体外也获得了类似的结果,即缺乏的骨髓来源巨噬细胞(BMDM)在对LPS和IFNG的反应中促炎细胞因子表达大幅增加。从机制上讲,我们发现缺失显著上调了TARM1(髓系细胞上的T细胞相互作用激活受体1)的蛋白表达,而抑制TARM1可抑制LPS和IFNG诱导的RAW 264.7巨噬细胞中的炎症反应。E3泛素连接酶MARCHF1和MARCHF8使TARM1泛素化,并以自噬依赖的方式促进其降解,而MARCHF1和MARCHF8功能域的沉默或突变消除了TARM1的降解。此外,我们发现泛素化的TARM1从质膜内化到内体中,然后被泛素结合自噬受体TAX1BP1和SQSTM1募集到自噬溶酶体途径中进行降解。总之,巨噬细胞自噬通过MARCHF1和MARCHF8介导的TARM1降解抑制肾脏炎症,从而预防AKI。AKI,急性肾损伤;ATG,自噬相关;Baf,巴弗洛霉素A;BMDM,骨髓来源巨噬细胞;CCL2/MCP-1,C-C基序趋化因子配体2;CHX,放线菌酮;CQ,氯喹;IFNG,干扰素γ;IL,白细胞介素;IR,缺血再灌注;MAP1LC3/LC3,微管相关蛋白1轻链3;LPS,脂多糖;MARCHF,膜相关环-CH型指蛋白;NC,阴性对照;NFKB,B细胞中κ轻多肽基因增强子的核因子;NLRP3,NLR家族,含吡喃结构域3;NOS2,一氧化氮合酶2,诱导型;Rap,雷帕霉素;Wort,渥曼青霉素;RT-qPCR,实时定量聚合酶链反应;Scr,血清肌酐;SEM,平均标准误差;siRNA,小干扰RNA;SYK,脾酪氨酸激酶;TARM1,髓系细胞上的T细胞相互作用激活受体1;TAX1BP1,Tax1(人I型T细胞白血病病毒)结合蛋白1;TEC,肾小管上皮细胞;TNF,肿瘤坏死因子;WT,野生型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/5e83579bfe8c/KAUP_A_2393926_F0011_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/d5c15577cfa1/KAUP_A_2393926_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/ef572972cf57/KAUP_A_2393926_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/cc6218353dd3/KAUP_A_2393926_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/8d35e2e2c716/KAUP_A_2393926_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/a08995c809ce/KAUP_A_2393926_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/ee32e233b4a7/KAUP_A_2393926_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/9ec792f32d8d/KAUP_A_2393926_F0007_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/83efa8bc50b5/KAUP_A_2393926_F0008_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/2245a8cf9d37/KAUP_A_2393926_F0009_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/6889d275ea7b/KAUP_A_2393926_F0010_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/5e83579bfe8c/KAUP_A_2393926_F0011_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/d5c15577cfa1/KAUP_A_2393926_F0001_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/ef572972cf57/KAUP_A_2393926_F0002_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/cc6218353dd3/KAUP_A_2393926_F0003_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/8d35e2e2c716/KAUP_A_2393926_F0004_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/a08995c809ce/KAUP_A_2393926_F0005_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/ee32e233b4a7/KAUP_A_2393926_F0006_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/9ec792f32d8d/KAUP_A_2393926_F0007_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/83efa8bc50b5/KAUP_A_2393926_F0008_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/2245a8cf9d37/KAUP_A_2393926_F0009_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/6889d275ea7b/KAUP_A_2393926_F0010_OC.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7df8/11702950/5e83579bfe8c/KAUP_A_2393926_F0011_OC.jpg

相似文献

[1]
Macrophage autophagy protects against acute kidney injury by inhibiting renal inflammation through the degradation of TARM1.

Autophagy. 2025-1

[2]
Macrophage knockout inhibits septic acute lung injury by downregulating autophagy regulator protein ubiquitination.

Autophagy. 2025-6-24

[3]
RNF144A inhibits autophagy by targeting BECN1 for degradation during infection.

Autophagy. 2025-4

[4]
Linear ubiquitination at damaged lysosomes induces local NFKB activation and controls cell survival.

Autophagy. 2025-5

[5]
Phosphorylation of the selective autophagy receptor TAX1BP1 by TBK1 and IKBKE/IKKi promotes ATG8-family protein-dependent clearance of MAVS aggregates.

Autophagy. 2025-1

[6]
Limiting cap-dependent translation increases 20S proteasomal degradation and protects the proteomic integrity in autophagy-deficient skeletal muscle.

Autophagy. 2025-6

[7]
HMBOX1 reverses autophagy mediated 5-fluorouracil resistance through promoting HACE1-induced ubiquitination and degradation of ATG5 in colorectal cancer.

Autophagy. 2025-7

[8]
ZDHHC7-mediated -palmitoylation of ATG16L1 facilitates LC3 lipidation and autophagosome formation.

Autophagy. 2024-12

[9]
TREM2 deficiency aggravates renal injury by promoting macrophage apoptosis and polarization via the JAK-STAT pathway in mice.

Cell Death Dis. 2024-6-7

[10]
Autophagy regulates cellular senescence by mediating the degradation of CDKN1A/p21 and CDKN2A/p16 through SQSTM1/p62-mediated selective autophagy in myxomatous mitral valve degeneration.

Autophagy. 2025-3-4

引用本文的文献

[1]
Acute kidney injury: pathogenesis and therapeutic interventions.

Mol Biomed. 2025-9-5

[2]
The Role of Protein Ubiquitination in the Onset and Progression of Sepsis.

Cells. 2025-7-2

[3]
Aspirin Attenuates Liver Fibrosis via Autophagy Induction.

J Cell Mol Med. 2025-7

[4]
Extracellular Vesicles in Renal Inflammatory Diseases: Revealing Mechanisms of Extracellular Vesicle-Mediated Macrophage Regulation.

Int J Mol Sci. 2025-4-12

[5]
Cadmium disrupted homeostasis of proximal renal tubular cells via targeting ATF4-CHOP complex into the nucleus.

Poult Sci. 2025-5

[6]
Nanoparticle-Driven Skeletal Muscle Repair and Regeneration Through Macrophage-Muscle Stem Cell Interaction.

Small. 2025-5

[7]
DAMPs prognostic signature predicts tumor immunotherapy, and identifies immunosuppressive mechanism of pannexin 1 channels in pancreatic ductal adenocarcinoma.

Front Immunol. 2025-1-15

[8]
Macrophages and autophagy: partners in crime.

FEBS J. 2024-10-22

本文引用的文献

[1]
Autophagy-deficient macrophages exacerbate cisplatin-induced mitochondrial dysfunction and kidney injury via miR-195a-5p-SIRT3 axis.

Nat Commun. 2024-5-23

[2]
Atg5 deficiency in macrophages protects against kidney fibrosis via the CCR6-CCL20 axis.

Cell Commun Signal. 2024-4-9

[3]
The role of the N terminus of lipidated human Atg8-family proteins in -membrane association.

Autophagy. 2024-1

[4]
Removal of hypersignaling endosomes by simaphagy.

Autophagy. 2024-4

[5]
Targeted degradation of extracellular secreted and membrane proteins.

Trends Pharmacol Sci. 2023-11

[6]
Myeloid autophagy genes protect mice against fatal TNF- and LPS-induced cytokine storm syndromes.

Autophagy. 2023-4

[7]
Endosomal LC3C-pathway selectively targets plasma membrane cargo for autophagic degradation.

Nat Commun. 2022-7-2

[8]
Ubiquitination-Proteasome System (UPS) and Autophagy Two Main Protein Degradation Machineries in Response to Cell Stress.

Cells. 2022-3-1

[9]
Hydroxychloroquine administration exacerbates acute kidney injury complicated by lupus nephritis.

Arthritis Res Ther. 2022-1-3

[10]
Autophagy deficiency promotes M1 macrophage polarization to exacerbate acute liver injury via ATG5 repression during aging.

Cell Death Discov. 2021-12-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索