He Xilai, Chen Hui, Yang Jiabao, Wang Tong, Pu Xingyu, Feng Guangpeng, Jia Shiyao, Bai Yijun, Zhou Zihao, Cao Qi, Li Xuanhua
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, 710072, Xi'an, China.
Research and Development Institute of Northwestern Polytechnical University in Shenzhen, 518057, Shenzhen, China.
Angew Chem Int Ed Engl. 2024 Dec 20;63(52):e202412601. doi: 10.1002/anie.202412601. Epub 2024 Oct 22.
[4-(3,6-dimethyl-9H-carbazol-9yl)butyl]phosphonic acid (Me-4PACz) self-assembly material has been recognized as a highly effective approach for mitigating nickel oxide (NiO) surface-related challenges in inverted perovskite solar cells (IPSCs). However, its uneven film generation and failure to effectively passivate the buried interface defects limit the device's performance improvement potential. Herein, p-xylylenediphosphonic acid (p-XPA) containing bilateral phosphate groups (-POH) is introduced as an interface layer between the NiO/Me-4PACz and the perovskite layer. P-XPA can flatten the surface of hole transport layer and optimize interface contact. Meanwhile, p-XPA achieves better energy level alignment and promotes interfacial hole transport. In addition, the bilateral -POH of p-XPA can chelate with Pb and form hydrogen bond with FA (formamidinium cation), thereby suppressing buried interface non-radiative recombination loss. Consequently, the IPSC with p-XPA buried interface modification achieves champion power conversion efficiency of 25.87 % (certified at 25.45 %) at laboratory scale (0.0448 cm). The encapsulated target device exhibits better operational stability. Even after 1100 hours of maximum power point tracking at 50 °C, its efficiency remains at an impressive 82.7 % of the initial efficiency. Molecules featuring bilateral passivation groups optimize interfacial contact and inhibit interfacial recombination, providing an effective approach to enhancing the stability and efficiency of devices.
[4-(3,6-二甲基-9H-咔唑-9-基)丁基]膦酸(Me-4PACz)自组装材料已被认为是缓解倒置钙钛矿太阳能电池(IPSCs)中与氧化镍(NiO)表面相关挑战的一种高效方法。然而,其薄膜生成不均匀且未能有效钝化掩埋界面缺陷限制了器件性能提升的潜力。在此,引入含有双边磷酸基团(-POH)的对苯二甲撑二膦酸(p-XPA)作为NiO/Me-4PACz与钙钛矿层之间的界面层。P-XPA可以使空穴传输层表面平整并优化界面接触。同时,p-XPA实现了更好的能级对准并促进界面空穴传输。此外,p-XPA的双边-POH可以与Pb螯合并与FA(甲脒阳离子)形成氢键,从而抑制掩埋界面的非辐射复合损失。因此,具有p-XPA掩埋界面修饰的IPSC在实验室规模(0.0448 cm²)下实现了25.87%的冠军功率转换效率(认证值为25.45%)。封装后的目标器件表现出更好的运行稳定性。即使在50 °C下进行1100小时的最大功率点跟踪后,其效率仍保持在初始效率的82.7%,令人印象深刻。具有双边钝化基团的分子优化了界面接触并抑制界面复合,为提高器件的稳定性和效率提供了一种有效方法。