Suppr超能文献

具有耐高温、疏水性和透气性的核壳复合纳米纤维用于高效日间被动辐射冷却

Core-Shell Composite Nanofibers with High Temperature Resistance, Hydrophobicity and Breathability for Efficient Daytime Passive Radiative Cooling.

作者信息

Fan Hong, Wang Kefan, Ding Yangjian, Qiang Yueyue, Yang Zhuo, Xu Huan, Li Min, Xu Zewen, Huang Cheng

机构信息

College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow Innovation Consortium for Intelligent Fibers and Wearable Technologies, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, 688 Moye Road, Suzhou, 215006, P. R. China.

School of Optical and Electronic Information & Jiangsu/Suzhou Key Laboratory of Biophotonics & International Joint Metacenter for Advanced Photonics and Electronics, Suzhou City University, No.1188, Wuzhong District, Suzhou, 215006, China.

出版信息

Adv Mater. 2024 Oct;36(40):e2406987. doi: 10.1002/adma.202406987. Epub 2024 Aug 28.

Abstract

Radiative cooling technology, which is renowned for its ability to dissipate heat without energy consumption, has garnered immense interest. However, achieving high performance, multifunctionality, and smart integration while addressing challenges such as film thickness and enhancing anisotropic light reflection remains challenging. In this study, a core-shell composite nanofiber, PVDF@PEI, is introduced and designed primarily from a symmetry-breaking perspective to develop highly efficient radiative cooling materials. Using a combination of solvent-induced phase separation (EIPS) inverse spinning and (aggregation) self-assembly methods (EISA or EIAA) and coaxial electrostatic spinning (ES), superconformal surface anisotropic porous nanofiber membranes are fabricated. These membranes exhibit exceptional thermal stability (up to 210 °C), high hydrophobicity (contact angle of 126°), robust UV protection (exceeding 99%), a fluorescence multiplication effect (with a 0.6% increase in fluorescence quantum efficiency), and good breathability. These properties enable the material to excel in a wide range of application scenarios. Moreover, this material achieved a remarkable daytime cooling temperature of 8 °C. The development of this fiber membrane offers significant advancements in the field of wearables and the multifunctionality of materials, paving new paths for future research and innovation.

摘要

辐射冷却技术以其无需能耗即可散热的能力而闻名,已引起了广泛关注。然而,在解决诸如薄膜厚度等挑战并增强各向异性光反射的同时,实现高性能、多功能性和智能集成仍然具有挑战性。在本研究中,引入并设计了一种核壳复合纳米纤维PVDF@PEI,主要从打破对称性的角度出发,以开发高效的辐射冷却材料。通过溶剂诱导相分离(EIPS)反向纺丝与(聚集)自组装方法(EISA或EIAA)以及同轴静电纺丝(ES)相结合,制备了超保形表面各向异性多孔纳米纤维膜。这些膜具有出色的热稳定性(高达210°C)、高疏水性(接触角为126°)、强大的紫外线防护能力(超过99%)、荧光倍增效应(荧光量子效率提高0.6%)以及良好的透气性。这些特性使该材料在广泛的应用场景中表现出色。此外,这种材料实现了8°C的显著日间冷却温度。这种纤维膜的开发为可穿戴设备领域和材料的多功能性带来了重大进展,为未来的研究和创新开辟了新的道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验