De Filippis Vincenzo, Acquasaliente Laura, Pierangelini Andrea, Marin Oriano
Laboratory of Protein Chemistry & Molecular Haematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy.
Department of Biomedical Sciences, School of Medicine, University of Padova, Via Trieste 75, 35121 Padua, Italy.
Biomimetics (Basel). 2024 Aug 12;9(8):485. doi: 10.3390/biomimetics9080485.
Tick Anticoagulant Peptide (TAP), a 60-amino acid protein from the soft tick , inhibits activated coagulation factor X (fXa) with almost absolute specificity. Despite TAP and Bovine Pancreatic Trypsin Inhibitor (BPTI) (i.e., the prototype of the Kunitz-type protease inhibitors) sharing a similar 3D fold and disulphide bond topology, they have remarkably different amino acid sequence (only 24% sequence identity), thermal stability, folding pathways, protease specificity, and even mechanism of protease inhibition. Here, fully active and correctly folded TAP was produced in reasonably high yields (20%) by solid-phase peptide chemical synthesis and thoroughly characterised with respect to its chemical identity, disulphide pairing, folding kinetics, conformational dynamics, and fXa inhibition. The versatility of the chemical synthesis was exploited to perform structure-activity relationship studies on TAP by incorporating non-coded amino acids at positions 1 and 3 of the inhibitor. Using Hydrogen-Deuterium Exchange Mass Spectrometry, we found that TAP has a remarkably higher conformational flexibility compared to BPTI, and propose that these different dynamics could impact the different folding pathway and inhibition mechanisms of TAP and BPTI. Hence, the TAP/BPTI pair represents a nice example of divergent evolution, while the relative facility of TAP synthesis could represent a good starting point to design novel synthetic analogues with improved pharmacological profiles.
蜱抗凝肽(TAP)是一种来自软蜱的由60个氨基酸组成的蛋白质,它几乎以绝对特异性抑制活化的凝血因子X(fXa)。尽管TAP和牛胰蛋白酶抑制剂(BPTI)(即Kunitz型蛋白酶抑制剂的原型)具有相似的三维折叠和二硫键拓扑结构,但它们的氨基酸序列却显著不同(序列同一性仅约24%),热稳定性、折叠途径、蛋白酶特异性,甚至蛋白酶抑制机制也不同。在这里,通过固相肽化学合成以相当高的产率(约20%)制备了完全活性且正确折叠的TAP,并对其化学特性、二硫键配对、折叠动力学、构象动力学和fXa抑制进行了全面表征。利用化学合成的多功能性,通过在抑制剂的第1位和第3位引入非编码氨基酸,对TAP进行构效关系研究。使用氢-氘交换质谱法,我们发现TAP与BPTI相比具有显著更高的构象灵活性,并提出这些不同的动力学可能影响TAP和BPTI不同的折叠途径和抑制机制。因此,TAP/BPTI对代表了趋异进化的一个很好的例子,而TAP合成的相对便利性可能是设计具有改善药理学特性的新型合成类似物的一个良好起点。