Sun Meng, Sun Hui, Wei Ruoyu, Li Wenqing, Lai Jinlai, Tian Ye, Li Miao
Key Laboratory of Environment Controlled Aquaculture, (Dalian Ocean University) Ministry of Education, Dalian 116023, China.
College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China.
Gels. 2024 Jul 25;10(8):494. doi: 10.3390/gels10080494.
Thermochromic smart windows realize an intelligent response to changes in environmental temperature through reversible physical phase transitions. They complete a real-time adjustment of solar transmittance, create a livable indoor temperature for humans, and reduce the energy consumption of buildings. Nevertheless, conventional materials that are used to prepare thermochromic smart windows face challenges, including fixed transition temperatures, limited solar modulation capabilities, and inadequate mechanical properties. In this study, a novel thermochromic hydrogel was synthesized from 2-hydroxy-3-butoxypropyl hydroxyethyl celluloses (HBPEC) and poly(N-isopropylacrylamide) (PNIPAM) by using a simple one-step low-temperature polymerization method. The HBPEC/PNIPAM hydrogel demonstrates a wide response temperature (24.1-33.2 °C), high light transmittance ( = 87.5%), excellent solar modulation (Δ = 71.2%), and robust mechanical properties. HBPEC is a functional material that can be used to adjust the lower critical solution temperature (LCST) of the smart window over a wide range by changing the degree of substitution (DS) of the butoxy group in its structure. In addition, the use of HBPEC effectively improves the light transmittance and mechanical properties of the hydrogels. After 100 heating and cooling cycles, the hydrogel still has excellent stability. Furthermore, indoor simulation experiments show that HBPEC/PNIPAM hydrogel smart windows have better indoor temperature regulation capabilities than traditional windows, making these smart windows potential candidates for energy-saving building materials.
热致变色智能窗通过可逆的物理相变实现对环境温度变化的智能响应。它们能实时调节太阳透过率,为人类创造适宜居住的室内温度,并降低建筑物的能源消耗。然而,用于制备热致变色智能窗的传统材料面临诸多挑战,包括固定的转变温度、有限的太阳调制能力以及不足的机械性能。在本研究中,通过简单的一步低温聚合方法,由2-羟基-3-丁氧基丙基羟乙基纤维素(HBPEC)和聚(N-异丙基丙烯酰胺)(PNIPAM)合成了一种新型热致变色水凝胶。HBPEC/PNIPAM水凝胶具有较宽的响应温度范围(24.1-33.2℃)、高透光率(τ = 87.5%)、优异的太阳调制能力(Δτ = 71.2%)以及良好的机械性能。HBPEC是一种功能材料,可通过改变其结构中丁氧基的取代度(DS)在较宽范围内调节智能窗的低临界溶液温度(LCST)。此外,HBPEC的使用有效提高了水凝胶的透光率和机械性能。经过100次加热和冷却循环后,水凝胶仍具有优异的稳定性。此外,室内模拟实验表明,HBPEC/PNIPAM水凝胶智能窗比传统窗户具有更好的室内温度调节能力,使这些智能窗成为节能建筑材料的潜在候选者。