Tan Rui, He Hongzhen, Wang Anqi, Wong Toby, Yang Yilin, Iguodala Sunshine, Ye Chunchun, Liu Dezhi, Fan Zhiyu, Furedi Mate, He Guanjie, Guldin Stefan, Brett Dan J L, McKeown Neil B, Song Qilei
Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK.
Department of Chemical Engineering, Swansea University, Swansea, SA1 8EN, UK.
Angew Chem Int Ed Engl. 2024 Dec 2;63(49):e202409322. doi: 10.1002/anie.202409322. Epub 2024 Nov 2.
Metallic zinc has emerged as a promising anode material for high-energy battery systems due to its high theoretical capacity (820 mAh g), low redox potential for two-electron reactions, cost-effectiveness and inherent safety. However, current zinc metal batteries face challenges in low coulombic efficiency and limited longevity due to uncontrollable dendrite growth, the corrosive hydrogen evolution reaction (HER) and decomposition of the aqueous ZnSO electrolyte. Here, we report an interfacial-engineering approach to mitigate dendrite growth and reduce corrosive reactions through the design of ultrathin selective membranes coated on the zinc anodes. The submicron-thick membranes derived from polymers of intrinsic microporosity (PIMs), featuring pores with tunable interconnectivity, facilitate regulated transport of Zn-ions, thereby promoting a uniform plating/stripping process. Benefiting from the protection by PIM membranes, zinc symmetric cells deliver a stable cycling performance over 1500 h at 1 mA/cm with a capacity of 0.5 mAh while full cells with NaMnO cathode operate stably at 1 A g over 300 cycles without capacity decay. Our work represents a new strategy of preparing multi-functional membranes that can advance the development of safe and stable zinc metal batteries.
金属锌因其高理论容量(820 mAh g)、两电子反应的低氧化还原电位、成本效益和固有安全性,已成为高能电池系统中一种很有前景的负极材料。然而,由于不可控的枝晶生长、腐蚀性析氢反应(HER)以及水系ZnSO电解质的分解,目前的锌金属电池在库仑效率低和寿命有限方面面临挑战。在此,我们报告一种界面工程方法,通过设计涂覆在锌负极上的超薄选择性膜来减轻枝晶生长并减少腐蚀性反应。由固有微孔聚合物(PIM)衍生的亚微米厚膜具有可调节互连性的孔,有助于锌离子的受控传输,从而促进均匀的电镀/剥离过程。受益于PIM膜的保护,锌对称电池在1 mA/cm² 、容量为0.5 mAh的条件下可实现超过1500小时的稳定循环性能,而具有NaMnO₂ 正极的全电池在1 A g⁻¹ 的电流下可稳定运行超过300次循环且无容量衰减。我们的工作代表了一种制备多功能膜的新策略,可推动安全稳定的锌金属电池的发展。