Suppr超能文献

家族性自主神经功能异常小鼠模型视网膜中的代谢缺陷

Metabolic Deficits in the Retina of a Familial Dysautonomia Mouse Model.

作者信息

Costello Stephanann M, Schultz Anastasia, Smith Donald, Horan Danielle, Chaverra Martha, Tripet Brian, George Lynn, Bothner Brian, Lefcort Frances, Copié Valérie

机构信息

Department of Chemistry and Biochemistry, Montana State University-Bozeman, Bozeman, MT 59717, USA.

Department of Microbiology and Cell Biology, Montana State University-Bozeman, Bozeman, MT 59717, USA.

出版信息

Metabolites. 2024 Jul 31;14(8):423. doi: 10.3390/metabo14080423.

Abstract

Neurodegenerative retinal diseases such as glaucoma, diabetic retinopathy, Leber's hereditary optic neuropathy (LHON), and dominant optic atrophy (DOA) are marked by progressive death of retinal ganglion cells (RGC). This decline is promoted by structural and functional mitochondrial deficits, including electron transport chain (ETC) impairments, increased oxidative stress, and reduced energy (ATP) production. These cellular mechanisms associated with progressive optic nerve atrophy have been similarly observed in familial dysautonomia (FD) patients, who experience gradual loss of visual acuity due to the degeneration of RGCs, which is thought to be caused by a breakdown of mitochondrial structures, and a disruption in ETC function. Retinal metabolism plays a crucial role in meeting the elevated energetic demands of this tissue, and recent characterizations of FD patients' serum and stool metabolomes have indicated alterations in central metabolic processes and potential systemic deficits of taurine, a small molecule essential for retina and overall eye health. The present study sought to elucidate metabolic alterations that contribute to the progressive degeneration of RGCs observed in FD. Additionally, a critical subpopulation of retinal interneurons, the dopaminergic amacrine cells, mediate the integration and modulation of visual information in a time-dependent manner to RGCs. As these cells have been associated with RGC loss in the neurodegenerative disease Parkinson's, which shares hallmarks with FD, a targeted analysis of the dopaminergic amacrine cells and their product, dopamine, was also undertaken. One dimensional (1D) proton (H) nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and retinal histology methods were employed to characterize retinae from the retina-specific conditional knockout (CKO) FD mouse model (; ). Metabolite alterations correlated temporally with progressive RGC degeneration and were associated with reduced mitochondrial function, alterations in ATP production through the Cahill and mini-Krebs cycles, and phospholipid metabolism. Dopaminergic amacrine cell populations were reduced at timepoints P30-P90, and dopamine levels were 25-35% lower in CKO retinae compared to control retinae at P60. Overall, this study has expanded upon our current understanding of retina pathology in FD. This knowledge may apply to other retinal diseases that share hallmark features with FD and may help guide new avenues for novel non-invasive therapeutics to mitigate the progressive optic neuropathy in FD.

摘要

青光眼、糖尿病性视网膜病变、莱伯遗传性视神经病变(LHON)和显性视神经萎缩(DOA)等神经退行性视网膜疾病的特征是视网膜神经节细胞(RGC)逐渐死亡。这种衰退是由结构和功能性线粒体缺陷促进的,包括电子传递链(ETC)损伤、氧化应激增加和能量(ATP)产生减少。在家族性自主神经功能异常(FD)患者中也观察到了这些与进行性视神经萎缩相关的细胞机制,这些患者由于RGC退化而逐渐丧失视力,这被认为是由线粒体结构破坏和ETC功能紊乱引起的。视网膜代谢在满足该组织升高的能量需求方面起着关键作用,最近对FD患者血清和粪便代谢组的表征表明,中央代谢过程发生了改变,并且牛磺酸存在潜在的全身缺陷,牛磺酸是一种对视网膜和整体眼部健康至关重要的小分子。本研究旨在阐明导致FD中观察到的RGC进行性退化的代谢改变。此外,视网膜中间神经元的一个关键亚群,即多巴胺能无长突细胞,以时间依赖性方式介导视觉信息向RGC的整合和调节。由于这些细胞与神经退行性疾病帕金森病中的RGC丢失有关,帕金森病与FD有共同特征,因此还对多巴胺能无长突细胞及其产物多巴胺进行了靶向分析。采用一维(1D)质子(H)核磁共振(NMR)光谱、质谱和视网膜组织学方法对视网膜特异性条件性敲除(CKO)FD小鼠模型(;)的视网膜进行表征。代谢物改变在时间上与RGC进行性退化相关,并与线粒体功能降低、通过卡希尔循环和小克雷布斯循环的ATP产生改变以及磷脂代谢有关。在P30 - P90时间点,多巴胺能无长突细胞群体减少,与P60时的对照视网膜相比,CKO视网膜中的多巴胺水平低25 - 35%。总体而言,本研究扩展了我们目前对FD视网膜病理学的理解。这些知识可能适用于与FD具有共同特征的其他视网膜疾病,并可能有助于为新型非侵入性治疗方法指引新途径,以减轻FD中的进行性视神经病变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c137/11356057/88709820f464/metabolites-14-00423-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验