Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
Dryland Agriculture Research Station, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, 191121, India.
Planta. 2024 Aug 28;260(4):81. doi: 10.1007/s00425-024-04517-9.
This review comprehensively elucidates maize drought tolerance mechanisms, vital for global food security. It highlights genetic networks, key genes, CRISPR-Cas applications, and physiological responses, guiding resilient variety development. Maize, a globally significant crop, confronts the pervasive challenge of drought stress, impacting its growth and yield significantly. Drought, an important abiotic stress, triggers a spectrum of alterations encompassing maize's morphological, biochemical, and physiological dimensions. Unraveling and understanding these mechanisms assumes paramount importance for ensuring global food security. Approaches like developing drought-tolerant varieties and harnessing genomic and molecular applications emerge as effective measures to mitigate the negative effects of drought. The multifaceted nature of drought tolerance in maize has been unfolded through complex genetic networks. Additionally, quantitative trait loci mapping and genome-wide association studies pinpoint key genes associated with drought tolerance, influencing morphophysiological traits and yield. Furthermore, transcription factors like ZmHsf28, ZmNAC20, and ZmNF-YA1 play pivotal roles in drought response through hormone signaling, stomatal regulation, and gene expression. Genes, such as ZmSAG39, ZmRAFS, and ZmBSK1, have been reported to be pivotal in enhancing drought tolerance through diverse mechanisms. Integration of CRISPR-Cas9 technology, targeting genes like gl2 and ZmHDT103, emerges as crucial for precise genetic enhancement, highlighting its role in safeguarding global food security amid pervasive drought challenges. Thus, decoding the genetic and molecular underpinnings of drought tolerance in maize sheds light on its resilience and paves the way for cultivating robust and climate-smart varieties, thus safeguarding global food security amid climate challenges. This comprehensive review covers quantitative trait loci mapping, genome-wide association studies, key genes and functions, CRISPR-Cas applications, transcription factors, physiological responses, signaling pathways, offering a nuanced understanding of intricate mechanisms involved in maize drought tolerance.
本文全面阐述了玉米耐旱机制,这对全球粮食安全至关重要。文中强调了遗传网络、关键基因、CRISPR-Cas 的应用以及生理响应,为培育具有弹性的品种提供了指导。玉米作为一种全球重要的作物,面临着普遍存在的干旱胁迫挑战,这对其生长和产量有重大影响。干旱作为一种重要的非生物胁迫,会引发一系列变化,包括玉米的形态、生化和生理方面。因此,揭示和理解这些机制对于确保全球粮食安全至关重要。开发耐旱品种和利用基因组和分子应用等方法,是减轻干旱负面影响的有效措施。玉米耐旱性的多面性通过复杂的遗传网络得以揭示。此外,数量性状位点图谱和全基因组关联研究确定了与耐旱性相关的关键基因,这些基因影响形态生理特性和产量。此外,转录因子如 ZmHsf28、ZmNAC20 和 ZmNF-YA1 通过激素信号、气孔调节和基因表达,在干旱响应中发挥关键作用。还有一些基因,如 ZmSAG39、ZmRAFS 和 ZmBSK1,据报道通过多种机制在增强耐旱性方面发挥着关键作用。CRISPR-Cas9 技术的整合,针对 gl2 和 ZmHDT103 等基因,对于精确的遗传增强至关重要,凸显了其在保护全球粮食安全免受普遍干旱挑战方面的作用。因此,解析玉米耐旱性的遗传和分子基础,揭示了其弹性,并为培育稳健和适应气候变化的品种铺平了道路,从而在气候挑战下保障全球粮食安全。本文综述了数量性状位点图谱、全基因组关联研究、关键基因和功能、CRISPR-Cas 的应用、转录因子、生理响应、信号通路等方面,深入了解了玉米耐旱性所涉及的复杂机制。