Borazjani Kasra, Khosravan Naji, Ying Leslie, Hosseinalipour Seyyedali
IEEE Trans Med Imaging. 2025 Jan;44(1):556-573. doi: 10.1109/TMI.2024.3450855. Epub 2025 Jan 2.
The use of machine learning (ML) for cancer staging through medical image analysis has gained substantial interest across medical disciplines. When accompanied by the innovative federated learning (FL) framework, ML techniques can further overcome privacy concerns related to patient data exposure. Given the frequent presence of diverse data modalities within patient records, leveraging FL in a multi-modal learning framework holds considerable promise for cancer staging. However, existing works on multi-modal FL often presume that all data-collecting institutions have access to all data modalities. This oversimplified approach neglects institutions that have access to only a portion of data modalities within the system. In this work, we introduce a novel FL architecture designed to accommodate not only the heterogeneity of data samples, but also the inherent heterogeneity/non-uniformity of data modalities across institutions. We shed light on the challenges associated with varying convergence speeds observed across different data modalities within our FL system. Subsequently, we propose a solution to tackle these challenges by devising a distributed gradient blending and proximity-aware client weighting strategy tailored for multi-modal FL. To show the superiority of our method, we conduct experiments using The Cancer Genome Atlas program (TCGA) datalake considering different cancer types and three modalities of data: mRNA sequences, histopathological image data, and clinical information. Our results further unveil the impact and severity of class-based vs type-based heterogeneity across institutions on the model performance, which widens the perspective to the notion of data heterogeneity in multi-modal FL literature.
通过医学图像分析利用机器学习(ML)进行癌症分期已在各医学学科中引起了广泛关注。当与创新的联邦学习(FL)框架相结合时,ML技术可以进一步克服与患者数据暴露相关的隐私问题。鉴于患者记录中经常存在多种数据模式,在多模态学习框架中利用联邦学习在癌症分期方面具有很大的前景。然而,现有的关于多模态联邦学习的工作通常假定所有数据收集机构都可以访问所有数据模式。这种过于简化的方法忽略了那些只能访问系统内部分数据模式的机构。在这项工作中,我们引入了一种新颖的联邦学习架构,该架构不仅旨在适应数据样本的异质性,还能适应各机构间数据模式固有的异质性/非均匀性。我们揭示了在我们的联邦学习系统中,不同数据模式下观察到的不同收敛速度所带来的挑战。随后,我们提出了一种解决方案来应对这些挑战,即设计一种针对多模态联邦学习的分布式梯度混合和邻近感知客户端加权策略。为了展示我们方法的优越性,我们使用癌症基因组图谱计划(TCGA)数据湖进行实验,考虑不同的癌症类型和三种数据模式:mRNA序列、组织病理学图像数据和临床信息。我们的结果进一步揭示了各机构中基于类别与基于类型的异质性对模型性能的影响和严重性,这拓宽了多模态联邦学习文献中数据异质性概念的视角。