Suppr超能文献

评估神经退行性疾病患者的吞咽功能:层次聚类分析。

Assessment of swallowing performance in patients with neurodegenerative disease: A hierarchical cluster analysis.

机构信息

Faculty of Health Sciences, Department of Speech and Language Therapy, Biruni University, Istanbul, Turkey.

School of Medicine, Department of Neurology, Maltepe University, Istanbul, Turkey.

出版信息

Brain Behav. 2024 Sep;14(9):e70005. doi: 10.1002/brb3.70005.

Abstract

BACKGROUND

Swallowing is a complex process that alters with age and neurological diseases; swallowing disorders can be a consequence of both of them. As an advanced multivariate statistical method, hierarchical cluster analysis (HCA) was utilized to make the dendrograms, which was used to find the relationship between the variables. The purpose of this study is to ascertain the type of clustering exhibited by the variables using HCA and to evaluate the approach to major neurodegenerative diseases (MND) with swallowing disorders based on the results obtained.

METHODS

Data were collected from a total of 173 patients from various neurological diagnoses, such as dementia, Parkinson's disease, stroke and polyneuropathy, aging between 42 and 104 (mean of age 72.85) by using the Montreal Cognitive Assessment, the Edinburgh Feeding Evaluation Scale (EdFED), the Eating Assessment Tool (EAT-10), and the Modified Mann Swallowing Ability test. From the collected data, dendrograms were formed by using HCA with Ward linkage method.

RESULTS

Based on cluster analysis results, clusters demonstrate statistical significance. They center around EdFED, EAT-10, and age in each MND. In healthy individuals, variables are not clustered as in the patient group. This study holds importance as it can give clinicians a different perspective on determining and managing the elderly population's swallowing problems.

CONCLUSIONS

The HCA method explicitly proposes which variables should be examined concurrently in the clinic for MND. This research is one of the pioneering studies conducted by using the HCA method.

摘要

背景

吞咽是一个复杂的过程,会随着年龄和神经疾病而改变;吞咽障碍可能是两者的结果。作为一种先进的多元统计方法,层次聚类分析(HCA)被用于制作聚类图,以发现变量之间的关系。本研究的目的是利用 HCA 确定变量的聚类类型,并根据所得结果评估基于吞咽障碍的主要神经退行性疾病(MND)的方法。

方法

从各种神经诊断的 173 名患者中收集数据,如痴呆、帕金森病、中风和多发性神经病,年龄在 42 至 104 岁之间(平均年龄为 72.85 岁),使用蒙特利尔认知评估、爱丁堡喂养评估量表(EdFED)、饮食评估工具(EAT-10)和改良曼吞咽能力测试。从收集的数据中,使用 Ward 链接方法的 HCA 形成聚类图。

结果

基于聚类分析结果,聚类具有统计学意义。它们以 EdFED、EAT-10 和每个 MND 中的年龄为中心。在健康个体中,变量不会像患者组那样聚类。本研究具有重要意义,因为它可以为临床医生确定和管理老年人群的吞咽问题提供不同的视角。

结论

HCA 方法明确提出了在 MND 临床检查中应同时检查哪些变量。这项研究是使用 HCA 方法进行的开创性研究之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ef8/11354087/dad52cee07f2/BRB3-14-e70005-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验