Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Biomedical Research Institute and School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei, China.
Cell. 2024 Oct 3;187(20):5572-5586.e15. doi: 10.1016/j.cell.2024.07.048. Epub 2024 Aug 27.
DNA polymerases are important drug targets, and many structural studies have captured them in distinct conformations. However, a detailed understanding of the impact of polymerase conformational dynamics on drug resistance is lacking. We determined cryoelectron microscopy (cryo-EM) structures of DNA-bound herpes simplex virus polymerase holoenzyme in multiple conformations and interacting with antivirals in clinical use. These structures reveal how the catalytic subunit Pol and the processivity factor UL42 bind DNA to promote processive DNA synthesis. Unexpectedly, in the absence of an incoming nucleotide, we observed Pol in multiple conformations with the closed state sampled by the fingers domain. Drug-bound structures reveal how antivirals may selectively bind enzymes that more readily adopt the closed conformation. Molecular dynamics simulations and the cryo-EM structure of a drug-resistant mutant indicate that some resistance mutations modulate conformational dynamics rather than directly impacting drug binding, thus clarifying mechanisms that drive drug selectivity.
DNA 聚合酶是重要的药物靶点,许多结构研究已经捕获了它们的不同构象。然而,对于聚合酶构象动力学对耐药性的影响,我们还缺乏详细的了解。我们确定了 DNA 结合的单纯疱疹病毒聚合酶全酶在多种构象下与临床使用的抗病毒药物相互作用的冷冻电镜 (cryo-EM) 结构。这些结构揭示了催化亚基 Pol 和持续因子 UL42 如何结合 DNA 以促进连续的 DNA 合成。出乎意料的是,在没有引入核苷酸的情况下,我们观察到 Pol 处于多种构象中,其手指结构域采用了关闭状态。药物结合结构揭示了抗病毒药物如何选择性地结合更容易采用关闭构象的酶。分子动力学模拟和耐药突变体的 cryo-EM 结构表明,一些耐药突变会调节构象动力学,而不是直接影响药物结合,从而阐明了驱动药物选择性的机制。