Department of Biotechnology, Motilal Nehru Institute of Technology Allahabad, Prayagraj, India.
J Gene Med. 2024 Sep;26(9):e3734. doi: 10.1002/jgm.3734.
Advancements in sequencing technologies have facilitated omics level information generation for various diseases in human. High-throughput technologies have become a powerful tool to understand differential expression studies and transcriptional network analysis. An understanding of complex transcriptional networks in human diseases requires integration of datasets representing different RNA species including microRNA (miRNA) and messenger RNA (mRNA). This review emphasises on conceptual explanation of generalized workflow and methodologies to the miRNA mediated responses in human diseases by using different in silico analysis. Although, there have been many prior explorations in miRNA-mediated responses in human diseases, the advantages, limitations and overcoming the limitation through different statistical techniques have not yet been discussed. This review focuses on miRNAs as important gene regulators in human diseases, methodologies for miRNA-target gene prediction and data driven methods for enrichment and network analysis for miRnome-targetome interactions. Additionally, it proposes an integrative workflow to analyse structural components of networks obtained from high-throughput data. This review explains how to apply the existing methods to analyse miRNA-mediated responses in human diseases. It addresses unique characteristics of different analysis, its limitations and its statistical solutions influencing the choice of methods for the analysis through a workflow. Moreover, it provides an overview of promising common integrative approaches to comprehend miRNA-mediated gene regulatory events in biological processes in humans. The proposed methodologies and workflow shall help in the analysis of multi-source data to identify molecular signatures of various human diseases.
测序技术的进步促进了人类各种疾病的组学水平信息的产生。高通量技术已成为理解差异表达研究和转录网络分析的有力工具。要了解人类疾病中复杂的转录网络,需要整合代表不同 RNA 种类(包括 microRNA(microRNA) 和信使 RNA(messenger RNA))的数据集。本综述强调了通过使用不同的计算分析方法,对人类疾病中 miRNA 介导的反应进行广义工作流程和方法的概念性解释。尽管已经有许多关于人类疾病中 miRNA 介导的反应的先前探索,但尚未讨论这些方法的优势、局限性以及如何通过不同的统计技术来克服这些局限性。本综述重点介绍了 miRNAs 作为人类疾病中重要的基因调控因子,miRNA 靶基因预测的方法以及 miRnome-靶标相互作用的富集和网络分析的数据驱动方法。此外,它还提出了一种整合工作流程来分析从高通量数据中获得的网络的结构组件。本综述解释了如何应用现有方法来分析人类疾病中的 miRNA 介导的反应。它解决了不同分析方法的独特特点、局限性及其统计解决方案如何影响分析方法的选择,并通过工作流程提供了对理解人类生物学过程中 miRNA 介导的基因调控事件的有前途的综合方法的概述。所提出的方法和工作流程将有助于分析多源数据,以识别各种人类疾病的分子特征。