Suppr超能文献

PMILACG模型:一种基于高分辨率CT确定的磨玻璃结节特征识别肺腺癌侵袭性的预测模型。

PMILACG Model: A Predictive Model for Identifying Invasiveness of Lung Adenocarcinoma Based on High-Resolution CT-Determined Ground Glass Nodule Features.

作者信息

Yan Bo, Jiang Yifeng, Fu Shijie, Li Rong

机构信息

Clinical Research Unit, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University.

Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University.

出版信息

Tohoku J Exp Med. 2025 Mar 7;265(1):13-20. doi: 10.1620/tjem.2024.J078. Epub 2025 Jan 30.

Abstract

The morphology of ground-glass nodule (GGN) under high-resolution computed tomography (HRCT) has been suggested to indicate different histological subtypes of lung adenocarcinoma (LUAD); however, existing studies only include the limited number of GGN characteristics, which lacks a systematic model for predicting invasive LUAD. This study aimed to construct a predictive model based on GGN features under HRCT for LUAD. A total of 1,189 surgical LUAD patients were enrolled, and their GGN-related features were assessed by 2 individual radiologists. The pathological diagnosis of the invasive LUAD was established by pathologic examination following surgery (including 1,073 invasive and 526 non-invasive LUAD). After adjustment by multivariate logistic regression, GGN diameter (OR = 1.382, 95% CI: 1.300-1.469), mean CT attenuation (OR = 1.007, 95% CI: 1.006-1.009), heterogeneous uniformity of density (OR = 2.151, 95% CI: 1.587-2.915), not defined nodule-lung interface (OR = 1.915, 95% CI: 1.384-2.651), GGN with spiculation (OR = 2.097, 95% CI: 1.519-2.896), type I (OR = 1.678, 95% CI: 1.216-2.371), and type II (OR = 3.577, 95% CI: 1.153-11.097) vessel changes were independent risk factors for invasive LUAD. In addition, a predictive model integrating these six independent GGN features was established (named as invasion of lung adenocarcinoma by GGN features (ILAG)), and receiver-operating characteristic curve illustrated that the ILAG model presented good predictive value for invasive LUAD (AUC: 0.905, 95% CI: 0.890-0.919). In conclusion, The ILAG predictive model, which integrates imaging features of GGN via HRCT, including diameter, mean CT attenuation, heterogeneous uniformity of density, not defined nodule-lung interface, GGN with spiculation, type I, and type II vessel changes, shows great potential for early estimation of LUAD invasiveness.

摘要

高分辨率计算机断层扫描(HRCT)下磨玻璃结节(GGN)的形态学已被认为可指示肺腺癌(LUAD)的不同组织学亚型;然而,现有研究仅纳入了有限数量的GGN特征,缺乏预测浸润性LUAD的系统模型。本研究旨在基于HRCT下的GGN特征构建LUAD的预测模型。共纳入1189例接受手术的LUAD患者,由2名放射科医生评估其与GGN相关的特征。通过术后病理检查确定浸润性LUAD的病理诊断(包括1073例浸润性LUAD和526例非浸润性LUAD)。经多因素逻辑回归调整后,GGN直径(OR = 1.382,95%CI:1.300 - 1.469)、平均CT衰减(OR = 1.007,95%CI:1.006 - 1.009)、密度不均匀性(OR = 2.151,95%CI:1.587 - 2.915)、结节-肺界面不清晰(OR = 1.915,95%CI:1.384 - 2.651)、有毛刺的GGN(OR = 2.097,95%CI:1.519 - 2.896)、I型(OR = 1.678,95%CI:1.216 - 2.371)和II型(OR = 3.577,95%CI:1.153 - 11.097)血管改变是浸润性LUAD的独立危险因素。此外,建立了一个整合这六个独立GGN特征的预测模型(命名为GGN特征预测肺腺癌浸润(ILAG)),受试者工作特征曲线表明ILAG模型对浸润性LUAD具有良好的预测价值(AUC:0.905,95%CI:0.890 - 0.919)。总之,ILAG预测模型通过HRCT整合了GGN的影像学特征,包括直径、平均CT衰减、密度不均匀性、结节-肺界面不清晰、有毛刺的GGN以及I型和II型血管改变,在早期评估LUAD浸润性方面显示出巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验