Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, 10210, Thailand.
Laboratory of Chemical Carcinogenesis, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
Sci Rep. 2024 Aug 28;14(1):20012. doi: 10.1038/s41598-024-70595-0.
Intrahepatic cholangiocarcinoma (iCCA) presents a challenging diagnosis due to its nonspecific early clinical manifestations, often resulting in late-stage detection and high mortality. Diagnosing iCCA is further complicated by its limited accuracy, often necessitating multiple invasive procedures for precise identification. Despite carbohydrate antigen 19-9 (CA19-9) having been investigated and employed for iCCA diagnosis, it demonstrates modest diagnostic performance. Consequently, the identification of novel biomarkers with improved sensitivity and specificity remains an imperative yet formidable task. Autoantibodies, as early indicators of the immune response against cancer, offer a promising avenue for enhancing diagnostic accuracy. Our study aimed to identify non-invasive blood-based autoantibody biomarkers capable of distinguishing iCCA patients from healthy individuals (CTRs). We profiled autoantibodies in 26 serum samples (16 iCCAs and 10 CTRs) using protein microarrays containing 1622 functional proteins. Leveraging machine learning techniques, we identified a signature composed of three autoantibody biomarkers (NDE1, PYCR1, and VIM) in conjunction with CA19-9 for iCCA detection. This combined signature demonstrated superior diagnostic performance with an AUC of 96.9%, outperforming CA19-9 alone (AUC: 83.8%). These results suggest the potential of autoantibody biomarkers to develop a complementary non-invasive diagnostic utility for routine iCCA screening.
肝内胆管癌(iCCA)由于其非特异性的早期临床表现,常常导致晚期发现和高死亡率,因此诊断具有挑战性。由于其准确性有限,常常需要进行多次侵入性操作来进行准确识别,因此诊断 iCCA 变得更加复杂。尽管已对碳水化合物抗原 19-9(CA19-9)进行了研究并用于 iCCA 的诊断,但它的诊断性能并不理想。因此,识别具有更高灵敏度和特异性的新型生物标志物仍然是一项必要且艰巨的任务。自身抗体作为针对癌症的免疫反应的早期指标,为提高诊断准确性提供了有前途的途径。我们的研究旨在确定能够区分 iCCA 患者与健康对照者(CTRs)的非侵入性血液自身抗体生物标志物。我们使用包含 1622 种功能蛋白的蛋白质微阵列对 26 个血清样本(16 个 iCCAs 和 10 个 CTRs)进行了自身抗体分析。利用机器学习技术,我们确定了一个由三个自身抗体生物标志物(NDE1、PYCR1 和 VIM)与 CA19-9 结合组成的特征,用于 iCCA 的检测。这个联合特征表现出优异的诊断性能,AUC 为 96.9%,优于单独的 CA19-9(AUC:83.8%)。这些结果表明,自身抗体生物标志物有可能开发出一种互补的非侵入性诊断工具,用于常规 iCCA 筛查。