Suppr超能文献

地球的无极性静电力场及其在离子逸出空间中的作用。

Earth's ambipolar electrostatic field and its role in ion escape to space.

机构信息

Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA.

Institute for Astrophysics and Computational Sciences, The Catholic University of America, Washington, DC, USA.

出版信息

Nature. 2024 Aug;632(8027):1021-1025. doi: 10.1038/s41586-024-07480-3. Epub 2024 Aug 28.

Abstract

Cold plasma of ionospheric origin has recently been found to be a much larger contributor to the magnetosphere of Earth than expected. Numerous competing mechanisms have been postulated to drive ion escape to space, including heating and acceleration by wave-particle interactions and a global electrostatic field between the ionosphere and space (called the ambipolar or polarization field). Observations of heated O ions in the magnetosphere are consistent with resonant wave-particle interactions. By contrast, observations of cold supersonic H flowing out of the polar ionosphere (called the polar wind) suggest the presence of an electrostatic field. Here we report the existence of a +0.55 ± 0.09 V electric potential drop between 250 km and 768 km from a planetary electrostatic field (E⊕ = 1.09 ± 0.17 μV m) generated exclusively by the outward pressure of ionospheric electrons. We experimentally demonstrate that the ambipolar field of Earth controls the structure of the polar ionosphere, boosting the scale height by 271%. We infer that this increases the supply of cold O ions to the magnetosphere by more than 3,800%, in which other mechanisms such as wave-particle interactions can heat and further accelerate them to escape velocity. The electrostatic field of Earth is strong enough by itself to drive the polar wind and is probably the origin of the cold H ion population that dominates much of the magnetosphere.

摘要

源自电离层的冷等离子体最近被发现是地球磁层的一个比预期大得多的贡献者。已经提出了许多相互竞争的机制来驱动离子逃逸到太空,包括通过波粒相互作用和电离层与太空之间的全局电场(称为双极或极化场)加热和加速。在磁层中观测到的加热的 O 离子与共振波粒相互作用一致。相比之下,在极地电离层(称为极风)中观测到冷超音速 H 的流出表明存在电场。在这里,我们报告了在距行星电场(E⊕=1.09±0.17μV/m)250km 到 768km 之间存在+0.55±0.09V 的电势下降,该电场仅由电离层电子的外向压力产生。我们通过实验证明,地球的双极场控制了极区电离层的结构,将其标高达 271%。我们推断,这将通过其他机制(如波粒相互作用)加热并进一步加速它们达到逃逸速度,从而将更多的冷 O 离子供应到磁层中,增加了 3800%以上。地球的电场本身就足以驱动极风,并且可能是主导大部分磁层的冷 H 离子群体的起源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验