Suppr超能文献

[手性多孔有机笼用作气相色谱分离手性和非手性化合物的固定相]

[Chiral porous organic cage used as stationary phase for gas chromatographic separation of chiral and achiral compounds].

作者信息

Huang Bin, Chen Juan, Wang Bang-Jin, Zhang Jun-Hui, Xie Sheng-Ming, Yuan Li-Ming

机构信息

School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.

出版信息

Se Pu. 2024 Sep;42(9):891-902. doi: 10.3724/SP.J.1123.2024.01025.

Abstract

Porous organic cages (POCs) are a new type of molecular material. The well-defined cavities, abundant host-guest recognition ability, and good solubility of POCs render them attractive for use in various fields such as molecular recognition, gas adsorption, molecular containers, sensing, catalysis, chromatographic separation. In this study, a chiral POC (CPOC) was synthesized via the Schiff base condensation of 4,4',4″,4″'-(ethene-1,1,2,2-tetrayl)tetrabenzaldehyde with (,)-1,2-cyclohexanediamine. CPOC was characterized using nuclear magnetic resonance (NMR) spectroscopy, Fourier transform-infrared (FT-IR) spectroscopy, mass spectroscopy (MS), and thermogravimetric analysis (TGA). The FT-IR spectrum of CPOC showed a strong peak at 1638 cm, which was attributed to imine (-C=N-) absorption, as well as absorption peaks at 2928 and 2856 cm, which were attributed to the stretching vibrations of -CH- and -CH-, respectively. MS analysis of CPOC revealed peaks at =1801.9797, =901.9914, and =601.6631, corresponding to [M+H], [M+2H], and [M+3H], respectively, and indicating a molecular formula of CPOC (CHN). The TGA curve of CPOC indicated high thermal stability up to 360 ℃; thus, the material is suitable for use as a stationary phase for gas chromatography (GC). CPOC was coated on the inner wall of a capillary column using the static coating method to prepare a GC column. Scanning electron microscopy (SEM) was used to characterize the coating condition of the fabricated column. The SEM images showed that the column had a uniform coating with a thickness of approximately 200 nm. Column efficiency was determined to be 3500 plates/m using -dodecane as a target at 120 ℃. The polarity of the CPOC stationary phase was evaluated using McReynolds constants, which were measured using benzene, 1-nitropropane, 2-pentanone, pyridine, and 1-butanol as probe molecules at 120 ℃. The average McReynolds constant was 152, indicating that CPOC is a moderately polar stationary phase. The ability of the column to separate organic mixtures, isomers, and chiral compounds was subsequently investigated. All components of the four organic mixtures (-alkanes, aromatics, -alcohols, and Grob mixtures) tested achieved baseline separation on the column. In addition, nine positional isomers of disubstituted benzenes were well separated, and seven (,,-nitrotoluene, ,,-nitrochlorobenzene, ,,-nitrobromobenzene, ,,-bromotoluene, ,,-dichlorobenzene, ,,-chloroaniline, and ,,-bromoaniline) achieved baseline separation. Some polar and apolar structural isomers, such as pentanol, dimethylphenol, dimethylaniline, butanol, and C9 aromatic hydrocarbon isomers, were also well separated on the column. Five -isomers (nerol/geraniol, -1,3-dichloropropene, -1,2,3-trichloropropene, -citral, and -decahydronaphthalene) were baseline-separated on the column. More importantly, the column successfully separated 12 chiral compounds, indicating good chiral separation ability. Among these chiral compounds, five (ethyl 3-hydroxybutyrate, a valine derivative, a glutamic acid derivative, 1,2-butanediol diacetate, and 1,2-epoxybutane) achieved baseline separation. Six of these chiral compounds (ethyl 3-hydroxybutyrate, the valine derivative, the glutamic acid derivative, 1,2-epoxybutane, epichlorohydrin, and epibromohydrin) could not be separated on a -DEX 120 column but were well separated on the developed column. Moreover, the separation efficiency of 1,2-butanediol diacetate and the isoleucine derivative on this column was better than that on the -DEX 120 column. Separation of the glutamic acid derivative and ,,-nitrotoluene was performed before and after the column was used for repeated injections to explore its repeatability. The retention times and selectivity observed after 80, 160, and 500 injections were nearly unchanged compared with those obtained following the first use of the column, indicating that the column has good repeatability. The column was conditioned at 280 ℃ for a certain period to examine its thermal stability. Separation of 3-hydroxybutyrate and ,,-nitrochlorobenzene after the column was conditioned at 280 ℃ for 2, 4, or 8 h revealed no obvious changes compared with the first use of the column, indicating that the column had good thermal stability. Thus, CPOC is a stationary phase with good application potential for GC.

摘要

多孔有机笼(POCs)是一种新型分子材料。POCs具有明确的空腔、丰富的主客体识别能力和良好的溶解性,使其在分子识别、气体吸附、分子容器、传感、催化、色谱分离等各个领域具有吸引力。在本研究中,通过4,4',4″,4″'-(乙烯-1,1,2,2-四亚基)四苯甲醛与(,)-1,2-环己二胺的席夫碱缩合反应合成了一种手性POC(CPOC)。使用核磁共振(NMR)光谱、傅里叶变换红外(FT-IR)光谱、质谱(MS)和热重分析(TGA)对CPOC进行了表征。CPOC的FT-IR光谱在1638 cm处显示出一个强峰,这归因于亚胺(-C=N-)吸收,以及在2928和2856 cm处的吸收峰,分别归因于-CH-和-CH-的伸缩振动。CPOC的MS分析显示在=1801.9797、=901.9914和=601.6631处有峰,分别对应于[M+H]、[M+2H]和[M+3H],表明CPOC的分子式为C(CHN)。CPOC的TGA曲线表明在高达360℃时具有高热稳定性;因此,该材料适用于用作气相色谱(GC)的固定相。采用静态涂覆法将CPOC涂覆在毛细管柱内壁上制备GC柱。使用扫描电子显微镜(SEM)对制备的柱的涂覆情况进行表征。SEM图像显示柱具有均匀的涂层,厚度约为200 nm。在120℃下以正十二烷为目标物测定柱效为3500塔板/米。使用麦克雷诺兹常数评估CPOC固定相的极性,该常数在120℃下使用苯、1-硝基丙烷、2-戊酮、吡啶和1-丁醇作为探针分子进行测量。平均麦克雷诺兹常数为152,表明CPOC是一种中等极性的固定相。随后研究了该柱分离有机混合物、异构体和手性化合物的能力。测试的四种有机混合物(正构烷烃、芳烃、醇类和格罗布混合物)的所有组分在柱上均实现了基线分离。此外,二取代苯的九种位置异构体得到了很好的分离,七种(,,-硝基甲苯、,,-硝基氯苯、,,-硝基溴苯、,,-溴甲苯、,,-二氯苯、,,-氯苯胺和,,-溴苯胺)实现了基线分离。一些极性和非极性结构异构体,如戊醇、二甲基苯酚、二甲基苯胺、丁醇和C9芳烃异构体,在柱上也得到了很好的分离。五种异构体(橙花醇/香叶醇、-1,3-二氯丙烯、-1,2,3-三氯丙烯、-柠檬醛和-十氢萘)在柱上实现了基线分离。更重要的是,该柱成功分离了12种手性化合物,表明具有良好的手性分离能力。在这些手性化合物中,五种(3-羟基丁酸乙酯、缬氨酸衍生物、谷氨酸衍生物、1,2-丁二醇二乙酸酯和1,2-环氧丁烷)实现了基线分离。其中六种手性化合物(3-羟基丁酸乙酯、缬氨酸衍生物、谷氨酸衍生物、1,2-环氧丁烷、环氧氯丙烷和环氧溴丙烷)在-DEX 120柱上无法分离,但在开发的柱上得到了很好的分离。此外,该柱上1,2-丁二醇二乙酸酯和异亮氨酸衍生物的分离效率优于-DEX 120柱。在柱进行重复进样前后对谷氨酸衍生物和,,-硝基甲苯进行分离,以探索其重复性。与柱首次使用后获得的保留时间和选择性相比,在80、160和500次进样后观察到的保留时间和选择性几乎没有变化,表明该柱具有良好的重复性。将柱在280℃下老化一定时间以检查其热稳定性。在柱在280℃下老化2、4或8小时后对3-羟基丁酸酯和,,-硝基氯苯进行分离,与柱首次使用相比没有明显变化,表明该柱具有良好的热稳定性。因此,CPOC是一种在GC中具有良好应用潜力的固定相。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/387b/11358875/554491facee2/img_1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验