Cazzato Gerardo, Sgarro Nicoletta, Casatta Nadia, Lupo Carmelo, Ingravallo Giuseppe, Ribatti Domenico
Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70124 Bari, Italy.
Innovation Department, Diapath S.p.A., Via Savoldini n.71, 24057 Martinengo, Italy.
Cancers (Basel). 2024 Aug 14;16(16):2843. doi: 10.3390/cancers16162843.
Angiogenesis, the formation of new blood vessels from pre-existing ones, is a crucial process in the progression and metastasis of melanoma. Recent research has highlighted the significant role of epigenetic modifications in regulating angiogenesis. This review comprehensively examines the current understanding of how epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNAs, influence angiogenic pathways in melanoma. DNA methylation, a key epigenetic modification, can silence angiogenesis inhibitors such as thrombospondin-1 and TIMP3 while promoting pro-angiogenic factors like vascular endothelial growth factor (VEGF). Histone modifications, including methylation and acetylation, also play a pivotal role in regulating the expression of angiogenesis-related genes. For instance, the acetylation of histones H3 and H4 is associated with the upregulation of pro-angiogenic genes, whereas histone methylation patterns can either enhance or repress angiogenic signals, depending on the specific histone mark and context. Non-coding RNAs, particularly microRNAs (miRNAs) further modulate angiogenesis. miRNAs, such as miR-210, have been identified as key regulators, with miR-9 promoting angiogenesis by targeting E-cadherin and enhancing the expression of VEGF. This review also discusses the therapeutic potential of targeting epigenetic modifications to inhibit angiogenesis in melanoma. Epigenetic drugs, such as DNA methyltransferase inhibitors (e.g., 5-azacytidine) and histone deacetylase inhibitors (e.g., Vorinostat), have shown promise in preclinical models by reactivating angiogenesis inhibitors and downregulating pro-angiogenic factors. Moreover, the modulation of miRNAs and lncRNAs presents a novel approach for anti-angiogenic therapy.
血管生成,即从已有的血管形成新的血管,是黑色素瘤进展和转移过程中的一个关键过程。最近的研究突出了表观遗传修饰在调节血管生成中的重要作用。这篇综述全面审视了目前对于表观遗传机制(包括DNA甲基化、组蛋白修饰和非编码RNA)如何影响黑色素瘤血管生成途径的理解。DNA甲基化作为一种关键的表观遗传修饰,可以使血管生成抑制剂(如血小板反应蛋白-1和金属蛋白酶组织抑制因子3)沉默,同时促进促血管生成因子(如血管内皮生长因子,VEGF)的表达。组蛋白修饰,包括甲基化和乙酰化,在调节血管生成相关基因的表达中也起着关键作用。例如,组蛋白H3和H4的乙酰化与促血管生成基因的上调相关,而组蛋白甲基化模式根据特定的组蛋白标记和背景,既可以增强也可以抑制血管生成信号。非编码RNA,特别是微小RNA(miRNA)进一步调节血管生成。已确定一些miRNA(如miR-210)是关键调节因子,其中miR-9通过靶向E-钙黏蛋白并增强VEGF的表达来促进血管生成。这篇综述还讨论了靶向表观遗传修饰以抑制黑色素瘤血管生成的治疗潜力。表观遗传药物,如DNA甲基转移酶抑制剂(如5-氮杂胞苷)和组蛋白去乙酰化酶抑制剂(如伏立诺他),已在临床前模型中显示出通过重新激活血管生成抑制剂和下调促血管生成因子来发挥作用的前景。此外,对miRNA和长链非编码RNA的调控为抗血管生成治疗提供了一种新方法。