Suppr超能文献

用多粘菌素B抑制医院细菌:计算机基因挖掘与体外分析

Nosocomial Bacteria Inhibition with Polymyxin B: In Silico Gene Mining and In Vitro Analysis.

作者信息

Chunduru Jayendra, LaRoe Nicholas, Garza Jeremy, Hamood Abdul N, Paré Paul W

机构信息

Chemistry & Biochemistry Department, Texas Tech University, Lubbock, TX 79409, USA.

Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.

出版信息

Antibiotics (Basel). 2024 Aug 8;13(8):745. doi: 10.3390/antibiotics13080745.

Abstract

Multidrug-resistant bacteria present a significant public health challenge; such pathogens exhibit reduced susceptibility to conventional antibiotics, limiting current treatment options. Cationic non-ribosomal peptides (CNRPs) such as brevicidine and polymyxins have emerged as promising candidates to block Gram-negative bacteria. To investigate the capability of bacteria to biosynthesize CNRPs, and specifically polymyxins, over 11,000 bacterial genomes were mined in silico. was identified as having a robust biosynthetic capacity, based on multiple polymyxin gene clusters. biosynthetic competence was confirmed by metabolite characterization via HPLC purification and MALDI TOF/TOF analysis. When grown in a selected medium, the metabolite yield was 4 mg/L with a 20-fold specific activity increase. Polymyxin B (PMB) was assayed with select nosocomial pathogens, including , , and , which exhibited minimum inhibitory concentrations of 4, 1, and 1 µg/mL, respectively.

摘要

多重耐药菌对公共卫生构成重大挑战;此类病原体对传统抗生素的敏感性降低,限制了当前的治疗选择。阳离子非核糖体肽(CNRPs)如短杆菌肽和多粘菌素已成为对抗革兰氏阴性菌的有前景的候选物。为了研究细菌生物合成CNRPs,特别是多粘菌素的能力,对超过11000个细菌基因组进行了计算机挖掘。基于多个多粘菌素基因簇,某菌株被确定具有强大的生物合成能力。通过高效液相色谱纯化和基质辅助激光解吸电离飞行时间/飞行时间质谱分析对代谢产物进行表征,证实了该菌株的生物合成能力。当在选定培养基中生长时,代谢产物产量为4mg/L,比活性提高了20倍。用选定的医院病原体对多粘菌素B(PMB)进行了检测,包括某菌、某菌和某菌,它们的最低抑菌浓度分别为4、1和1μg/mL。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4071/11350920/d729d7e426e0/antibiotics-13-00745-g001a.jpg

相似文献

1
Nosocomial Bacteria Inhibition with Polymyxin B: In Silico Gene Mining and In Vitro Analysis.
Antibiotics (Basel). 2024 Aug 8;13(8):745. doi: 10.3390/antibiotics13080745.
2
Cooperative action of SP-A and its trimeric recombinant fragment with polymyxins against Gram-negative respiratory bacteria.
Front Immunol. 2022 Sep 7;13:927017. doi: 10.3389/fimmu.2022.927017. eCollection 2022.
4
Characterization of the Polymyxin D Synthetase Biosynthetic Cluster and Product Profile of Paenibacillus polymyxa ATCC 10401.
J Nat Prod. 2017 May 26;80(5):1264-1274. doi: 10.1021/acs.jnatprod.6b00807. Epub 2017 May 2.
5
Response of Paenibacillus polymyxa SC2 to the stress of polymyxin B and a key ABC transporter YwjA involved.
Appl Microbiol Biotechnol. 2024 Dec;108(1):17. doi: 10.1007/s00253-023-12916-3. Epub 2024 Jan 3.
6
MipA-MipB envelope proteins act as new sensors of polymyxins.
mBio. 2024 Mar 13;15(3):e0221123. doi: 10.1128/mbio.02211-23. Epub 2024 Feb 12.
8
Characterization of the colistin (polymyxin E1 and E2) biosynthetic gene cluster.
Arch Microbiol. 2015 May;197(4):521-32. doi: 10.1007/s00203-015-1084-5. Epub 2015 Jan 22.

本文引用的文献

1
A panel of diverse clinical isolates for research and development.
JAC Antimicrob Resist. 2021 Dec 10;3(4):dlab179. doi: 10.1093/jacamr/dlab179. eCollection 2021 Dec.
3
Profiling the Production of Antimicrobial Secondary Metabolites by J194 Under Different Culturing Conditions.
Front Chem. 2021 Mar 30;9:626653. doi: 10.3389/fchem.2021.626653. eCollection 2021.
4
Microbial Cationic Peptides as a Natural Defense Mechanism against Insect Antimicrobial Peptides.
ACS Chem Biol. 2021 Mar 19;16(3):447-451. doi: 10.1021/acschembio.0c00794. Epub 2021 Feb 17.
5
Polymyxins and Bacterial Membranes: A Review of Antibacterial Activity and Mechanisms of Resistance.
Membranes (Basel). 2020 Aug 8;10(8):181. doi: 10.3390/membranes10080181.
6
Antimicrobial Resistance in ESKAPE Pathogens.
Clin Microbiol Rev. 2020 May 13;33(3). doi: 10.1128/CMR.00181-19. Print 2020 Jun 17.
7
Regulating polymyxin resistance in Gram-negative bacteria: roles of two-component systems PhoPQ and PmrAB.
Future Microbiol. 2020 Apr;15(6):445-459. doi: 10.2217/fmb-2019-0322. Epub 2020 Apr 6.
8
Fungal elicitor-induced transcriptional changes of genes related to branched-chain amino acid metabolism in Streptomyces natalensis HW-2.
Appl Microbiol Biotechnol. 2020 May;104(10):4471-4482. doi: 10.1007/s00253-020-10564-5. Epub 2020 Mar 27.
9
Pushing the envelope: LPS modifications and their consequences.
Nat Rev Microbiol. 2019 Jul;17(7):403-416. doi: 10.1038/s41579-019-0201-x.
10
Purification, Characterization and Evaluation of Polymyxin A From : An Underexplored Member of the Polymyxin Family.
Front Microbiol. 2018 Nov 23;9:2864. doi: 10.3389/fmicb.2018.02864. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验