Denizon Mélanie, Hong Eva, Terrade Aude, Taha Muhamed-Kheir, Deghmane Ala-Eddine
Institut Pasteur, Université Paris Cité, Invasive Bacterial Infections Unit and National Reference Centre for Meningococci and Haemophilus influenzae, 28 Rue du Dr. Roux, CEDEX 15, 75724 Paris, France.
Antibiotics (Basel). 2024 Aug 12;13(8):761. doi: 10.3390/antibiotics13080761.
Infections due to require prompt treatment using beta-lactam antibiotics. We used a collection of 81 isolates obtained between 1940 and 2001 from several countries. Whole genome sequencing showed the high heterogeneity of these isolates but allowed us to track the acquisition of beta-lactamase, which was first detected in 1980. Modifications of the gene encoding the penicillin-binding protein 3, PBP3, also involved in resistance to beta-lactams, appeared in 1991. These modifications (G490E, A502V, R517H, and N526K) were associated with resistance to amoxicillin that was not relieved by a beta-lactamase inhibitor (clavulanic acid), but the isolates retained susceptibility to third-generation cephalosporins (3GC). The modeling of the PBP3 structure suggested that these modifications may reduce the accessibility to the PBP3 active site. Other modifications appeared in 1998 and were associated with resistance to 3GC (S357N, M377I, S385T, and L389F). Modeling of the PBP3 structure suggested that they lie near the S379xN motif of the active site of PBP3. Overall resistance to amoxicillin was detected among 25 isolates (30.8%) of this collection. Resistance to sulfonamides was predicted by a genomic approach from the sequences of the gene (encoding the dihydropteroate synthase) due to difficulties in interpreting phenotypic anti-microbial testing and found in 13 isolates (16.0%). Our data suggest a slower spread of resistance to sulfonamides, which may be used for the treatment of infections. Genomic analysis may help in the prediction of antibiotic resistance, inform structure-function analysis, and guide the optimal use of antibiotics.
由……引起的感染需要使用β-内酰胺类抗生素进行及时治疗。我们使用了一组于1940年至2001年间从多个国家获取的81株分离株。全基因组测序显示这些分离株具有高度异质性,但使我们能够追踪β-内酰胺酶的获得情况,该酶于1980年首次被检测到。编码青霉素结合蛋白3(PBP3)的基因发生的修饰也与对β-内酰胺类抗生素的耐药性有关,这种修饰于1991年出现。这些修饰(G490E、A502V、R517H和N526K)与对阿莫西林的耐药性相关,且这种耐药性不会因β-内酰胺酶抑制剂(克拉维酸)而缓解,但这些分离株对第三代头孢菌素(3GC)仍保持敏感。PBP3结构建模表明,这些修饰可能会降低对PBP3活性位点的可及性。其他修饰于1998年出现,并与对3GC的耐药性相关(S357N、M377I、S385T和L389F)。PBP3结构建模表明,它们位于PBP3活性位点的S379xN基序附近。在这组分离株中,25株(30.8%)检测到对阿莫西林的总体耐药性。由于难以解释表型抗菌测试结果,通过对二氢蝶酸合酶基因序列的基因组方法预测了对磺胺类药物的耐药性,在13株分离株(16.0%)中发现了这种耐药性。我们的数据表明,对磺胺类药物的耐药性传播较慢,磺胺类药物可用于治疗……感染。基因组分析可能有助于预测抗生素耐药性、为结构-功能分析提供信息,并指导抗生素的最佳使用。