文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

感染:使用炎症生物标志物和血常规衍生比值预测住院患者的死亡风险

Infection: Use of Inflammatory Biomarkers and Hemogram-Derived Ratios to Predict Mortality Risk in Hospitalized Patients.

作者信息

Scarlata Giuseppe Guido Maria, Quirino Angela, Costache Carmen, Toc Dan Alexandru, Marascio Nadia, Pantanella Marta, Leucuta Daniel Corneliu, Ismaiel Abdulrahman, Dumitrascu Dan Lucian, Abenavoli Ludovico

机构信息

Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy.

Unit of Clinical Microbiology, Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy.

出版信息

Antibiotics (Basel). 2024 Aug 15;13(8):769. doi: 10.3390/antibiotics13080769.


DOI:10.3390/antibiotics13080769
PMID:39200069
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11352037/
Abstract

BACKGROUND: infection (CDI) is a significant cause of mortality, especially in healthcare environments. Reliable biomarkers that can accurately predict mortality in CDI patients are yet to be evaluated. Our study aims to evaluate the accuracy of several inflammatory biomarkers and hemogram-derived ratios in predicting mortality in CDI patients, such as the neutrophil-to-lymphocyte ratio (NLR), the systemic immune-inflammation index (SII), the platelet-to-neutrophil ratio (PNR), the derived neutrophil-to-lymphocyte ratio (dNLR), C-reactive protein (CRP), the platelet-to-lymphocyte ratio (PLR), and procalcitonin (PCT). RESULTS: NLR showed a sensitivity of 72.5% and a specificity of 58.42% with an area under curve (AUC) = 0.652. SII had a sensitivity of 77.5%, a specificity of 54.74%, and an AUC = 0.64. PNR, neutrophils, dNLR, and lymphocytes had lower AUCs which ranged from 0.595 to 0.616, with varied sensitivity and specificity. CRP, leukocytes, and platelets showed modest predictive values with AUCs below 0.6. PCT had a sensitivity of 100%, a low specificity of 7.41%, and an AUC = 0.528. METHODS: We conducted a retrospective analysis of CDI patients from two different hospital settings in Italy and Romania during the COVID-19 pandemic, from 1 January 2020 to 5 May 2023. Statistical analyses included -tests, Wilcoxon rank-sum tests, χ2 tests, and multivariate logistic regression to identify predictors of mortality. ROC analysis assessed the accuracy of biomarkers and hemogram-derived ratios. A value < 0.05 was considered significant. CONCLUSIONS: Neutrophils, dNLR, NLR, SII, and PNR are valuable biomarkers for predicting mortality in CDI patients. Understanding these predictors can improve risk stratification and clinical outcomes for CDI patients.

摘要

背景:艰难梭菌感染(CDI)是导致死亡的重要原因,尤其是在医疗环境中。能够准确预测CDI患者死亡率的可靠生物标志物尚未得到评估。我们的研究旨在评估几种炎症生物标志物和血常规衍生比值在预测CDI患者死亡率方面的准确性,如中性粒细胞与淋巴细胞比值(NLR)、全身免疫炎症指数(SII)、血小板与中性粒细胞比值(PNR)、衍生中性粒细胞与淋巴细胞比值(dNLR)、C反应蛋白(CRP)、血小板与淋巴细胞比值(PLR)和降钙素原(PCT)。 结果:NLR的敏感性为72.5%,特异性为58.42%,曲线下面积(AUC)=0.652。SII的敏感性为77.5%,特异性为54.74%,AUC = 0.64。PNR、中性粒细胞、dNLR和淋巴细胞的AUC较低,范围为0.595至0.616,敏感性和特异性各不相同。CRP、白细胞和血小板的预测价值中等,AUC低于0.6。PCT的敏感性为100%,特异性低至7.41%,AUC = 0.528。 方法:我们对2020年1月1日至2023年5月5日新冠疫情期间意大利和罗马尼亚两家不同医院的CDI患者进行了回顾性分析。统计分析包括t检验、Wilcoxon秩和检验、χ2检验和多因素逻辑回归,以确定死亡率的预测因素。ROC分析评估了生物标志物和血常规衍生比值的准确性。P值<0.05被认为具有统计学意义。 结论:中性粒细胞、dNLR、NLR、SII和PNR是预测CDI患者死亡率的有价值的生物标志物。了解这些预测因素可以改善CDI患者的风险分层和临床结局。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6929/11352037/02b64cc3b858/antibiotics-13-00769-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6929/11352037/02b64cc3b858/antibiotics-13-00769-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6929/11352037/02b64cc3b858/antibiotics-13-00769-g001.jpg

相似文献

[1]
Infection: Use of Inflammatory Biomarkers and Hemogram-Derived Ratios to Predict Mortality Risk in Hospitalized Patients.

Antibiotics (Basel). 2024-8-15

[2]
COMPLETE BLOOD COUNT DERIVED INFLAMMATORY BIOMARKERS IN PATIENTS WITH HEMATOLOGIC MALIGNANCIES.

Georgian Med News. 2020-5

[3]
The role of hemogram parameters and C-reactive protein in predicting mortality in COVID-19 infection.

Int J Clin Pract. 2021-7

[4]
Systemic Inflammatory Mediators Are Effective Biomarkers for Predicting Adverse Outcomes in Clostridioides difficile Infection.

mBio. 2020-5-5

[5]
Predictive value of the neutrophil-to-lymphocyte ratio, monocyte-to-lymphocyte ratio, platelet-to-neutrophil ratio, and neutrophil-to-monocyte ratio in lupus nephritis.

Lupus. 2020-8

[6]
[The relationship between the comprehensive blood inflammation indexes and stage I pneumoconiosis and its combined lung infections].

Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2024-5-20

[7]
Preoperative peripheral inflammatory markers are predictors of postoperative central diabetes insipidus in craniopharyngioma patients: a retrospective study.

BMC Cancer. 2024-5-8

[8]
Diagnostic value of preoperative inflammatory markers in patients with glioma: a multicenter cohort study.

J Neurosurg. 2017-11-3

[9]
The correlation of systemic immune-inflammation index, neutrophil-to-lymphocyte ratio, derived neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio with disease severity in recurrent aphthous stomatitis.

J Cosmet Dermatol. 2022-10

[10]
Prognostic impact of immune inflammation biomarkers in predicting survival and radiosensitivity in patients with non-small-cell lung cancer treated with chemoradiotherapy.

J Med Imaging Radiat Oncol. 2022-2

引用本文的文献

[1]
Infections: Epidemiological and Laboratory Data from the Internal Medicine Departments of a Tertiary Care Hospital in Athens, Greece, During the Past Decade.

Medicina (Kaunas). 2025-8-5

[2]
Association between systemic immune-inflammation index and latent tuberculosis infection: a cross-sectional study.

Front Med (Lausanne). 2025-7-30

[3]
Irritable bowel syndrome after infection.

Med Pharm Rep. 2025-7

[4]
Discordance in Clinical Indicators With Sequential Fecal Microbiota Transplantation: A Case of Fulminant Infection.

ACG Case Rep J. 2025-6-11

[5]
Evaluating Vancomycin Monotherapy and Dual Therapy with Nifuroxazide for Medium-Severe Clostridioides Difficile Infection.

Antibiotics (Basel). 2025-4-14

本文引用的文献

[1]
Practical Lessons on Antimicrobial Therapy for Critically Ill Patients.

Antibiotics (Basel). 2024-2-6

[2]
A Systematic Literature Review on Risk Factors for and Timing of Clostridioides difficile Infection in the United States.

Infect Dis Ther. 2024-2

[3]
The management of infection: from empirism to evidence.

Med Pharm Rep. 2024-1

[4]
Prevalence of Colonization with Multidrug-Resistant Bacteria: Results of a 5-Year Active Surveillance in Patients Attending a Teaching Hospital.

Antibiotics (Basel). 2023-10-10

[5]
infection in a skilled nursing facility (SNF): cost savings of an automated, standardized probiotic antimicrobial stewardship programme (ASP) policy.

JAC Antimicrob Resist. 2023-9-6

[6]
Insights into the Evolving Epidemiology of Infection and Treatment: A Global Perspective.

Antibiotics (Basel). 2023-7-1

[7]
Infection in an Italian Tertiary Care University Hospital: A Retrospective Analysis.

Antibiotics (Basel). 2023-4-30

[8]
Epidemiology and Risk Factors of Clostridioides difficile Infections in Germany: A Health Claims Data Analysis.

Infect Dis Ther. 2023-5

[9]
The Role of Hemogram-derived Ratios in COVID-19 Severity Stratification in a Primary Healthcare Facility.

Acta Inform Med. 2023-3

[10]
Increasing Consumption of Antibiotics during the COVID-19 Pandemic: Implications for Patient Health and Emerging Anti-Microbial Resistance.

Antibiotics (Basel). 2022-12-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索