Department of Neuropsychiatry, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osaka-Sayama, Osaka 589-8511, Japan.
Int J Mol Sci. 2024 Aug 9;25(16):8696. doi: 10.3390/ijms25168696.
Based on the pathophysiological changes observed in schizophrenia, the gamma-aminobutyric acid (GABA) hypothesis may facilitate the development of targeted treatments for this disease. This hypothesis, mainly derived from postmortem brain results, postulates dysfunctions in a subset of GABAergic neurons, particularly parvalbumin-containing interneurons. In the cerebral cortex, the fast spike firing of parvalbumin-positive GABAergic interneurons is regulated by the Kv3.1 and Kv3.2 channels, which belong to a potassium channel subfamily. Decreased Kv3.1 levels have been observed in the prefrontal cortex of patients with schizophrenia, prompting the investigation of Kv3 channel modulators for the treatment of schizophrenia. However, biomarkers that capture the dysfunction of parvalbumin neurons are required for these modulators to be effective in the pharmacotherapy of schizophrenia. Electroencephalography and magnetoencephalography studies have demonstrated impairments in evoked gamma oscillations in patients with schizophrenia, which may reflect the dysfunction of cortical parvalbumin neurons. This review summarizes these topics and provides an overview of how the development of therapeutics that incorporate biomarkers could innovate the treatment of schizophrenia and potentially change the targets of pharmacotherapy.
基于在精神分裂症中观察到的病理生理变化,γ-氨基丁酸(GABA)假说可能有助于开发针对这种疾病的靶向治疗方法。该假说主要源自尸检大脑结果,提出 GABA 能神经元亚群的功能障碍,特别是含脑啡肽的中间神经元。在大脑皮层中,脑啡肽阳性 GABA 能中间神经元的快速尖峰放电由 Kv3.1 和 Kv3.2 通道调节,它们属于钾通道亚家族。精神分裂症患者的前额叶皮层中观察到 Kv3.1 水平降低,促使人们研究 Kv3 通道调节剂来治疗精神分裂症。然而,这些调节剂在精神分裂症的药物治疗中有效,需要有捕获脑啡肽神经元功能障碍的生物标志物。脑电图和脑磁图研究表明,精神分裂症患者的诱发伽马振荡受损,这可能反映了皮质脑啡肽神经元的功能障碍。这篇综述总结了这些主题,并概述了如何将生物标志物纳入治疗方法的发展可以创新精神分裂症的治疗,并有可能改变药物治疗的靶点。